
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Wavelet-Based Relative Prefix Sum Methods for Range Sum Queries in

Data Cubes
Lemire, Daniel

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=45b8af0a-ca7b-416d-ab76-fa0306a8af30

https://publications-cnrc.canada.ca/fra/voir/objet/?id=45b8af0a-ca7b-416d-ab76-fa0306a8af30

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l’information

Wavelet-Based Relative Prefix Sum Methods for

Range Sum Queries in Data Cubes *

Lemire, D.
October 2002

* published in Proceedings of CASCON 2002 Toronto, Canada, October 2002,
NRC 44967.

Copyright 2002 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

Wavelet-Based Relative Prefix Sum Methods for Range Sum
Queries in Data Cubes∗

Daniel Lemire
National Research Council of Canada

Abstract

Data mining and related applications often rely on
extensive range sum queries and thus, it is impor-
tant for these queries to scale well. Range sum
queries in data cubes can be achieved in time O(1)
using prefix sum aggregates but prefix sum up-
date costs are proportional to the size of the data
cube O

(
nd

)
. Using the Relative Prefix Sum (RPS)

method, the update costs can be reduced to the root
of the size of the data cube O

(
nd/2

)
. We present

a new family of base b wavelet algorithms further
reducing the update costs to O

(
nd/β) for β as large

as we want while preserving constant-time queries.
We also show that this approach leads to O

(
logd n

)

query and update methods twice as fast as Haar-
based methods. Moreover, since these new meth-
ods are pyramidal, they provide incrementally im-
proving estimates.

1 Introduction

Computational scalability with respect to both data
queries and data updates is a key requirement in
On-Line Analytical Processing (OLAP). Moreover,
for OLAP applications, it is desirable to have low
query costs. However, one should distinguish be-
tween OLAP and Precomputed Analytic Process-
ing (PAP) systems [12]: a system with very low
query costs which is expensive to update or initial-
ize might not be practical for OLAP systems where
data updates are frequent and new databases are
created dynamically. On the other hand, a slightly
longer query time might be acceptable as long as
approximations are quickly available and as long as
the aggregates can be quickly updated. Reaching a
good compromise with respect to the various per-

∗Proc. of CASCON 2002, Toronto, Canada, October 2002.
NRC 44967.

formance measures is more important than merely
having fast queries.

Data cube [9] is a common data model used by
data warehouses and can be simply described as
a large multidimensional array which can be im-
plemented as such or as an interface to a (rela-
tional) database. Consider the following simple
data cube example with three dimensions (d = 3):
age, income, weight. Each cell in the data cube D

(e.g. 17 years old, 10k$, 60 kg) contains a measure
Di, j,k. For example, cells may contain the number
of individuals matching the criteria of the cell (e.g.
D17,10k$,60kg = 100). A range sums query amounts
to summing up the measures ∑i, j,k∈I Di, j,k in a set
of cell indices I. For example, one could ask the
number m of individuals between the ages of 18
and 25, with an income above 20 k$ and a weight
over 100 kg. The simplest way to do this com-
putation is to sum over all cells. Assuming that
in the age, income and weight model, we have all
ages from 0 to 100 years, all incomes from 0 k$
to 100 k$ in increments of 1 k$ and all weights
from 40 kg to 200 kg in increment of 1 kg, a range
sum query might involve 100×100×160 individ-
ual sums which amounts to well over 1 million op-
erations. Clearly, this approach does not scale well
with respect to queries.

In the context of this paper, we measure cost in
terms of the number of cells we need to read or
change in a data cube in the worst possible case.
We assume that the data cubes have dimension d

and that the size of the data cube (number of cells)
is nd for some large n and a fixed dimension d.
Also, for simplicity, we assume that data cubes are
indexed from 0 to n in all dimensions.

With OLAP applications in mind, “prefix sum”
method was developed and it can resolve such
range sum queries in time O(1) [13]: one cre-
ates a new data cube D̃ of the same size contain-
ing the the sums of the measures “up to”, D̃i, j,k =

∑r≤i,s≤ j,t≤k Dr,s,t (see Tables 1 and 2 for a two-
dimensional example). It can be seen that the com-
putational cost for D̃ is proportional to the size of
the data cube itself. However, given a set of con-
secutive indices I =

[
i1b, i

1
e

]
×

[
i2b, i

2
e

]
×

[
i3b, i

3
e

]
, we

can compute the range sum in time O(1). Indeed,
let ι k(x) = x(ikb− ike)+ ike, then the range sum over I

on D is given by

∑
i, j,k∈I

Di, j,k =
1

∑
r=0

1

∑
s=0

1

∑
t=0

(−1)r+s+tD̃ι1(r),ι2(s),ι3(t),

and, more generally, if we note the prefix sums as

Si1,...,id = ∑
r1≤ii,...,rd≤id

Dr1,...,rd
, (1)

we have

Si1,...,id =
1

∑
r1=0

· · ·
1

∑
rd=0

(−1)r1+...+rd D̃ι1(r1),...,ιd(rd)

(2)
so that, in general, a sum over up to nd cells can
be computed with 2d sums irrespective of n using
the prefix sum data cube D̃. For static databases,
this approach may well be optimal. Unfortunately,
the prefix sum approach has a major drawback: up-
dating the value of a single cell in the data cube D

means updating up to nd cells in the prefix sum data
cube D̃.

3 5 1 2 2 4 6 3 4
7 3 2 6 8 7 1 2 1
2 4 2 3 3 3 4 5 4
3 2 1 5 3 5 2 8 0
4 2 1 3 3 4 7 1 3
2 3 3 6 1 8 5 1 2
4 5 2 7 1 9 3 3 1
2 4 2 2 3 1 9 1 5
1 3 1 1 2 2 8 2 6

Table 1: A randomly chosen 9× 9 data cube D.
By convention indices start at (0,0) in the upper left
corner and go up to (8,8) in the lower right corner.

The Relative Prefix Sums (RPS) method [8] ease
the update burden. Instead of building a large pre-
fix sum over all of the data, the RPS method builds
local prefix sums. In order to still offer fast queries,
an “overlay” is used to record the cumulative pre-
fix sums. Let⌊x⌋ be the greatest integer smaller
or equal to x so that η ⌊i/η⌋ is i rounded off to a
multiple of η. In the unidimensional case, given
n cells xi with i = 1, ...,n, the corresponding Prefix

3 8 9 11 13 17 23 26 30
10 18 21 29 39 50 57 62 67
12 24 29 40 53 67 78 88 97
15 29 35 51 67 86 99 117 126
19 35 42 61 80 103 123 142 154
21 40 50 75 95 126 151 171 185
25 49 61 93 114 154 182 205 220
27 55 69 103 127 168 205 229 249
28 59 74 109 135 178 223 249 275

Table 2: Prefix sum for the data cube of Table 1.
Note that if the upper left value is changed in Table
1, all of this table must be updated (81 cells).

Sum (PS) cells yi contain the sums yi = ∑i
k=η⌊i/η⌋ xk

where η is the overlay box size. On the other hand,
the unidimensional overlay cube contains the sums
∑η×i

k=0 xk. It can be seen that the RPS method has
query cost O(1) and an update cost that depends on
η. By choosing η =

√
n, it can be shown that the

update cost is O
(
nd/2

)
and this is the best possi-

ble choice. An example is given in Table 4 and the
RPS algorithm is given next (see [8] for more de-
tails). The current work is a generalization of this
approach into a pyramidal setting (see Table 3 for a
comparison).

method Query cost Update cost

Data Cube [9] O
(
nd

)
O(1)

Prefix Sum [13] O(1) O
(
nd

)

RPS [8] O(1) O
(
nd/2

)

Haar[18] O
(
nd

)
O(log2 n)

HBC [3] O(1) O
(
nd−1

)

PyRPS O(1)
O

(
nd/β) ,

β = 1,2, . . .

PyRPS (log) O
(
logd

b n
)

O
(
(b−1)d logd

b n
)

Table 3: Comparison the PyRPS method described
in section 4 and the PyRPS(log) from subsection
4.1 with some other range sum aggregates for a data
cube of size nd with large n.

Algorithm 1 (Relative Prefix Sum) Given a data

cube Di1,...,id of size nd and a set overlay box of size

η, the prefix sum array PR is given by

PRi1,...,id =
i1

∑
k1=η⌊i1/η⌋

· · ·
id

∑
kd=η⌊id/η⌋

Dk1,...,kd
.

Let σ(i) = {0, . . . , i} if i modulo η = 0 and

{η ⌊i/η⌋+1, . . . , i} otherwise. The overlay array

2

Ω is given by

Ωi1,...,id = ∑
k1 ∈ σ(i1), . . . ,kd ∈ σ(i1)
(k1, . . . ,kd) 6= (i1, . . . , id)

Dk1,...,kd

for all tuples (i1, . . . , id) where at at least one com-

ponent ik is a multiple of η. The algorithm returns

both the prefix sum array PR and the overlay array

Ω.

More recently, Hierarchical Band Cube (HBC)
have been proposed [3] as an alternative to the
RPS method: but HBC data updates require time
O

(
nd−1

)
. However, to our knowledge, the HBC

method is the first to generalize the RPS method in
terms of base b trees and it does away with the over-
lay. Other authors have used base 2 (dyadic) Haar
wavelets [4, 10] either to compress or approximate
prefix sums aggregates [14, 16, 17] or as a replace-
ment for the prefix sum method [18]. An important
limitation of these wavelet-based methods is that
they have polylogarithmic query times.

3 8 9 2 4 8 6 9 13
10 18 21 8 18 29 7 12 17
12 24 29 11 24 38 11 21 30

3 5 6 5 8 13 2 10 10
7 11 13 8 14 23 9 18 21
9 16 21 14 21 38 14 24 29

4 9 11 7 8 17 3 6 7
6 15 19 9 13 23 12 16 22
7 19 24 10 16 28 20 26 38

0 0 0 9 0 0 17 0 0
0 12 33
0 20 50
12 12 17 46 13 27 97 10 19
0 7 17
0 15 40
21 19 29 86 20 51 179 20 34
0 8 14
0 13 24

Table 4: The Relative Prefix (RP) array and its
overlay for the data cube of Table 1. The overlay
size was chosen to be

√
9 = 3.

Assuming that range sums aggregates cannot use
a buffer larger than the data cube itself, we are mo-
tivated by the following questions:

1. Can wavelets allow queries in time O(1) as the
prefix sum methods does?

2. Assuming we require that queries be pro-
cessed in time O(1), how cheap can the up-

dates be? Can we improve on the RPS
method?

3. What is the best wavelet for range sum prob-
lems?

The answer to the first question is positive: it suf-
fices to use wavelets in base b so that the height
of the wavelet tree is logb n. B−adic wavelets
were first introduced by Heller [11] as rank M

wavelets, and are related to b−adic subdivision
scheme [5, 6]. By choosing b large enough, we
can effectively control the height of the tree. This
allows us to limit the worst-case query cost to a set
maximum which depends on the height of the tree.
This base b approach is similar to replacing binary
trees by B−trees as a most scalable alternative. As
for the second question, we show that we can gen-
eralize the RPS method as a wavelet-like approach
and improve the scalability of the method as much
as we want: the update costs scales as O

(
nd/β)

with β as a parameter. Finally, as for the third ques-
tion, the dyadic Haar wavelet is probably not the
best choice for many range sum problems. Instead,
we present a special case of Aldroubi’s oblique

wavelets [1] as an alternative. Oblique wavelets can
be described as “stripped down wavelets” that can
be computed twice as fast while still providing a
wavelet tree. Most wavelets found in commercial
software packages are orthogonal or biorthogonal
wavelets [4] (Haar, Daubechies, . . .) because it as-
sumed that the data is smooth or that the user is
interested in the Euclidean norm of the wavelet co-
efficients and its relation to the Euclidean norm of
the signal (e.g. Riesz property). For the applica-
tion at hand, range sum queries, the main relevant
“wavelet feature” is the “multiscale” or pyramidal
approach [7]. Of course, for higher order range
queries such as variance and covariance queries,
other wavelets might be a better choice [15].

Our main result is a generalization of the RPS
into a Pyramidal Relative Prefix Sum (PyRPS) ap-
proach which is shown to be arbitrarily scalable.
We also present adapted b−adic oblique wavelets
as a preferred wavelet transform for range sum
problems.

This paper is organized as follow. We begin
with a review of unidimensional wavelets. We
present efficient, in-place algorithms to compute
the oblique wavelet transform and we conclude
with some computational complexity analysis. We
then show how these results can be generalized in

3

the multidimensional case using the direct product.
The wavelet-based Pyramidal Relative Prefix Sum
approach is then presented and analyzed. We con-
clude with some optimization analysis for the poly-
logarithmic case, a discussion on variable bases,
and some remarks concerning practical implemen-
tations.

2 Unidimensional Wavelets

The basic idea of a wavelet transform is to project
the data on a simpler, coarser scale while mea-
suring the error made so that the transformation
can be reversed [4]. By projecting repeatedly the
data on coarser and coarser scales, a wavelet tree
is built and provides a “mathematical zoom”. The
Haar transform [10] is probably the first example
of a wavelet transform. Let Ξ = {xi} be an array
of length 2J with indices IJ =

{
0, . . . ,2J−1

}
. In

one dimension and with a convenient normaliza-
tion, the Haar transform can be described with two
operators: the coarse-scale projection

PHaar (Ξ) = {x2i + x2i+1}i∈IJ−1

and the error measure (or “wavelet coefficients”)

QHaar (Ξ) = {x2i− x2i+1}i∈IJ−1
.

Both PHaar and QHaar downsample the data by a
factor of 2 so we say that the transformation is
dyadic (base 2) and given the result of both PHaar

and QHaar, we can recover the original data xi. The
tree structure comes in when you repeatedly apply
the operators PHaar and QHaar to the results of the
coarse scale operator PHaar. For example, given the
data {a,b,c,d}, we get PHaar({a,b,c,d}) = {a +
b,c + d} and QHaar({a,b,c,d}) = {a− b,c− d}
and then PHaar(PHaar({a,b,c,d})) = {a + b + c +
d} and QHaar(PHaar({a,b,c,d})) = {a + b− c−
d}. The final wavelet tree with height 2 is given
by the coarse scale projection {a + b + c + d}, its
corresponding wavelet coefficient {a + b− c− d}
and finer scale wavelet coefficients {a + b,c + d}
and {a− b,c− d}. Wavelet coefficients at step
j are given by QHaar (PHaar)

j−1 (Ξ). The lowest
wavelet coefficients in the tree are QHaar(Ξ), then
QHaar(PHaar(Ξ)), QHaar(PHaar(PHaar(Ξ))), and so
on. Because of the downsampling, an array of
length n will have n/2 wavelet coefficients at the
bottom, then n/4 at the second step and n/2 j at step
j (j = 1,2, . . .).

As an alternative, we propose to use oblique
wavelets [1] defined by the following operators: the
coarse-scale projection (as in Haar)

P2 (Ξ) = {x2i + x2i+1}i∈IJ−1

and the error measure (or “wavelet coefficients”)

Q2 (Ξ) = {x2i}i∈IJ−1
.

One major drawback of such simpler transform is
that it doesn’t preserve the Euclidean (l2) norm or
the energy of the data unlike a properly normalized
Haar transform and so, some authors [7], prefer
to refer to such a transform as a “pyramidal trans-
form” rather than a “wavelet transform”.

For b > 2, let Ξ = {xi} be an array of length bJ

with indices IJ =
{

0, . . . ,bJ−1
}

. We propose to
generalize the operators P2 and Q2 to the equivalent
base b > 2 case:

Pb (Ξ) = {xbi + xbi+1 + . . .+ xbi+b−1}i∈IJ−1

and

Qb,1 (Ξ) = {xbi}i∈IJ−1
,

Qb,2 (Ξ) = {xbi + xbi+1}i∈IJ−1
,

· · ·
Qb,b−1 (Ξ) = {xbi + xbi+1 + . . .+ xbi+b−2}i∈IJ−1

.

These new operators downsample the original data
by a factor of b and so are said to be b−adic but
since we have b linearly independent operators,
they still allow perfect reconstruction (see proof
of proposition 1). Notice that subtraction is never
used as the operators are effectively local prefix
sums. The following algorithm can be used to effi-
ciently compute the transform; for the sake of sim-
plicity, we assume that n is a power of b.

Algorithm 2 (In-Place Base b Oblique Wavelet

Transform) Given an array of values xi, i =
0, . . . ,n−1, the first step is given by

xbk← xbk,

xbk+1← xbk + xbk+1, ...,

xbk+b−1← xbk+b−1 + xbk+b−2

for k = 0, ...,n/b − 1 so that we have xi →
∑i

k=b⌊(i+1)/b⌋ xk for i = 0, . . . ,n−1. Similarly, suc-

cessive steps at depth j = 1, ..., logb n−1 are given

by

xb jk+b j−1← xb jk+b j−1,

4

xb jk+2b j−1← xb jk+2b j−1 + xb jk+b j−1, . . . ,

xb j+1k−1← xb j+1k−1 + xb j+1k−b j−1

for k = 0, . . . ,n/b j−1 so that we have

xi→
i

∑
k=γ(i, j)

xk

for i = b j − 1,2b j − 1, . . . ,n and γ(i, j) = b j ×⌊
(i+1)/b j

⌋
−1.

The computational cost of this algorithm is
O(n). Indeed, the number of sums can be seen
to be b−1

b
n + b−1

b2 n + . . . + b− 1 = n− 1 assum-
ing that n is a power of b. Consider that the Haar
transform involves n + n

2 + . . . + 2 = 2n− 2 sums
and subtractions and is therefore more expensive
by a factor of 2. As an example of this algo-
rithm, suppose we apply the in-place transform to
the array D = {1,0,2,1,2,4,3,1,3} with b = 3.
The first step gives D1 = {1,1,3, 1,3,7, 3,4,7}
whereas the second and last step gives D2 =
{1,1,3, 1,3,10, 3,4,17} where only the sixth and
the last data samples changed. Since the tree has
height 2 (2-step transform), the sum of the first k

cells in D can always be computed using at most 2
sums in D2. For example, to compute the sum of
the first 8 terms in D, it suffices to sum the 6th and
the 8th term in D2: 10 + 4 = 14. The proof of the
next proposition gives the general formula to com-
pute such range sums. We note the transformation
described by Algorithm 2 as Γb so that

Γ3 (1,0,2,1,2,4,3,1,3)= {1,1,3,1,3,10,3,4,17}.

Proposition 1 Given the base b oblique transform

yi=0,...,n−1 = Γb (xi=0,...,n−1), then one can compute

any range sum of the form Sk = ∑k
i=0 xi in time

O(logb n).

Proof. The proof is constructive. Let γ(k, j) =
b j ×

⌊
(k +1)/b j

⌋
− 1 and assume n = 2J , then it

suffices to observe that

Sk = yk + yγ(k,1) + · · ·+ yγ(k,J−1) (3)

where we used the convention that the same cells
are never summed twice and negative indices are
ignored e.g. S2b−1 = y2b−1. We see that at most
J = logb n sums are required to compute Sk.

In practical applications, the sum in equation 3
could be approximated by the few last terms since

they involve many more cells in the original data
cube and are likely to provide an incrementally im-
proving estimate. This is particularly convenient if
the topmost cells in the tree are buffered for fast
access. Similarly, if one cell is updated, then no
more than 1 + (b− 1) logb n cells need to be up-
dated in the transformed array as the proof of the
next proposition shows. This is true for all base
b wavelet transform even though we are only con-
cerned with the transform described by Algorithm
2. We define the height (or depth) of an index in the
tree by height(k) = 1 + max{ j ∈◆ : γ(k, j) = k}
where γ(k, j) = b j ×

⌊
(k +1)/b j

⌋
− 1. This defi-

nition might seem inefficient if we try to test all j

values (up to logb n). Similarly, the sum of equation
3 must be evaluated while checking for redundant
terms which might appear difficult. However, the
following proposition shows that both problems are
easily taken care of essentially because γ is mono-
tone decreasing.

Proposition 2 If γ(k, j) = k, then γ(k,ν) = k for all

ν < j and γ(k,α) is monotone decreasing in α.

Proof. Notice that b j ×
⌊
(k +1)/b j

⌋
≤ k + 1,

hence γ(k, j) ≤ k for j ≥ 0. By Euler’s theo-
rem, given b and j, there exist integers r ≥ 0 and
0 ≤ s < b j such that k + 1 = b jr + s. Assume that
γ(k, j) = k for some j > 0, then b jr− 1 = k and
γ(k, j−1) = b jr−1+

⌊
s/b j

⌋
= k+

⌊
s/b j

⌋
, but be-

cause γ(k, j−1) ≤ k, we have γ(k, j−1) = k. The
first result follows by finite induction.

To show the second result, we observe that
b j

⌊
x/b j

⌋
≤ ⌊x⌋ and thus, setting x = (k + 1)/bt

for some t > 0, we have b j
⌊

k+1
b j+t

⌋
≤

⌊
k+1
bt

⌋
or

b j+t
⌊

k+1
b j+t

⌋
≤ bt

⌊
k+1
bt

⌋
hence γ(k, j + t) ≤ γ(k, t)

which shows that γ is monotone.
Finally, this O(n) transform can be updated with

only a logarithmic cost as the following proposition
states.

Proposition 3 The base b ≥ 2 oblique transform

yi=0,...,n−1 = Γb (xi=0,...,n−1), can be updated in time

O((b− 1) logb n) given a change in one cell value

xk.

Proof. A change in cell xk requires at most
b − 1 update at each depth in the wavelet tree
except for the topmost cells where b cells might
need to be updated. A maximum of b +

5

(b − 1)(logb n − 1) cells may need to be up-
dated: yk, . . . ,yγ(k+b,1)−1; yγ(k+b,1), yγ(k+2b,1),. . . ,
yγ(k+b2,2)−b; . . .; yγ(k+bJ−1,J−1), yγ(k+2bJ−1,J−1), . . . ,
yn−1. If the value stored in cell xk was increased
(resp. decreased) by ∆y, it suffices to add (resp.
subtract) ∆y to each cell.

3 Multidimensional Wavelets

In the multidimensional case, we take the wavelet
transform using the direct product of the unidimen-
sional wavelet transform Γb ⊗ ·· · ⊗ Γb on a data
cube of size bJd . In practical terms, this suggests
that we apply the transform on each dimension sep-
arately. For example, given a data cube Di1,...,id ,
0 ≤ ik < n of dimension d, the wavelet transform
can be computed using d steps. Firstly, we ap-
ply the operator Γb on the first dimension nd−1

times: we have nd−1 arrays ai1(i2, ..., id) indexed
by i1 and defined by ai1(i2, ..., id) = Di1,...,id . Let
a′i1 = Γb (ai1) for all possible values of i2, . . . , id

and set D
(1)
i1,...,id

= a′i1(i2, ..., id). We repeat this
process with each dimension and note the result
Γb⊗·· ·⊗Γb(D). It can be seen that this algorithm
has a cost of O

(
nd

)
. A two-dimensional exam-

ple is given in Table 5. We define the height of
a cell (i1, . . . , id) in the tree by height(i1, . . . , id) =
min{height(i1), . . .height(id)}.

The computational cost to range sum queries is
the same as the computational cost for computing
prefix sums, Si1,...,id (see equation 2). However, by
proposition 1, prefix sums can be computed in time
logb n assuming we have applied the wavelet trans-
form Γb. A similar result applies in the multidi-
mensional case.

Proposition 4 Given the base b oblique transform

of a data cube of size nd , DΓb , then one can

compute range sums Si1,...,id (prefix sums) in time

O(d logb n).

Proof. Let γ(k, j) = b j ×
⌊
(k +1)/b j

⌋
− 1 and

consider the operator σk(a) = ak + aγ(k,1) + . . . +
aγ(k,J−1). By the proof of proposition 1, the pre-
fix sums can be computed by the wavelet transform
∑k≤ j ak = σk ◦Γb(ak) for any array a. Thus if we
note DΓb = Γb⊗·· ·⊗Γb(D), then

Si1,...,id = ∑
r1≤ii,...,rd≤id

Dr1,...,rd

= (σi1 ◦Γb)⊗·· ·⊗
(
σid ◦Γb

)
(D)

= σi1 ⊗·· ·⊗σid (Γb⊗·· ·⊗Γb(D))

= σi1 ⊗·· ·⊗σid

(
DΓb

)

=
J−1

∑
r1=0

· · ·
J−1

∑
rd=0

D
Γb

γ(r1, j),...,γ(rd , j)

which can be done in time O
(
logd

b n
)

since each
sum involves at most logb n terms.

The proof of the previous proposition gives us
the formula to compute prefix sums. As an exam-
ple, consider Table 5 where n = 9, d = 2, b = 3 and
J = 2. Since γ(7,1) = 5, the prefix sum at position
(7,7) is given by

∑
r1=7,5

∑
r2=7,5

DΓ3
r1,r2

= D7,7 +D7,5 +D5,7 +D5,5

= 16+45+42+126 = 229

and the result can be checked in Table 2. As another
example, we can compute the prefix sum at position
(7,1) with the convention that the first index refers
to the row number. We have that γ(1,1) = −1 and
γ(7,1) = 5, thus the prefix sum is given by

∑
r1=1

∑
r2=7,5

DΓ3
r1,r2

= D1,7 +D1,5

= 15+40 = 55.

At most 2× 2 = 4 sums are required to compute
the prefix sum at any cell as predicted by proposi-
tion 4. Similarly, if one were to change the value
of cell (0,0), then only 25 cells need to be up-
dated (see Table 6). The following proposition
makes this result general. As in the unidimen-
sional case, these sums can be seen as incremen-
tally accurate estimates: assuming we stop short
of the first dL terms in the sum, the approximation

∑J−1
r1=L · · ·∑J−1

rd=L D
Γb

γ(r1, j),...,γ(rd , j) and the actual value

Si1,...,id differ at most by the sum of dnd−1(bL− 1)
cells. If the values in the data cube are bounded in
absolute value by M, the error in skipping the last
dL sums is at most Mdnd−1(bL− 1) (exponential
decay as L→ 0).

Proposition 5 The base b oblique transform Γb⊗
·· ·⊗Γb(D) of a data cube of size nd can be updated

in time O((b− 1)d logd
b n) given a change in one

cell value.

Proof. Since the operator Γb can be applied di-
mension per dimension, we can simply count the
number of cells affected by the change. By the

6

proof of proposition 3, only b+(b−1)(logb n−1)
cells are affected after the transform on the first di-
mension is done. Each on these cells, in turn, im-
pact on at most b +(b−1)(logb n−1) cells across
the second dimension. Thus after d transform, at
most (b +(b− 1)(logb n− 1))d cells are impacted
across all dimensions.

3 8 9 2 4 17 6 9 30
10 18 21 8 18 50 7 12 67
12 24 29 11 24 67 11 21 97
3 5 6 5 8 19 2 10 29
7 11 13 8 14 36 9 18 57

21 40 50 25 45 126 25 45 185
4 9 11 7 8 28 3 6 35
6 15 19 9 13 42 12 16 64
28 59 74 35 74 178 45 71 275

Table 5: Oblique Transform Γ3 ⊗ Γ3(D)(PyRPS)
for the data cube D of Table 1. All cells are at
height 1 in the wavelet tree except the 9 cells with
a darker gray background which are at height 2.

3.1 8.1 9.1 2 4 17.1 6 9 30.1
10.1 18.1 21.1 8 18 50.1 7 12 67.1
12.1 24.1 29.1 11 24 67.1 11 21 97.1

3 5 6 5 8 19 2 10 29
7 11 13 8 14 36 9 18 57

21.1 40.1 50.1 25 45 126.1 25 45 185.1
4 9 11 7 8 28 3 6 35
6 15 19 9 13 42 12 16 64

28.1 59.1 74.1 35 74 178.1 45 71 275.1

Table 6: Oblique Transform Γ3⊗ Γ3(D) (PyRPS)
for the data cube D of Table 1 modified with D0,0 =
3.1.

4 Pyramidal Relative Prefix

Sum Method (PyRPS)

We are now ready to prove the next theorem which
describes the main result of the proposed PyRPS
method. In effect, the PyRPS method can be made
as scalable as needed (assuming n large).

Theorem 1 (Pyramidal Relative Prefix Sum)

Given a data cube of size nd , for any integer

1 ≤ β ≤ log2 n there exist a base b oblique trans-

form Γb ⊗ ·· · ⊗ Γb(D) which allows range sum

queries in time O(1) and can be updated in time

O(nd/β) given a change in one cell.

Proof. We can set the height of the wavelet tree
to a fix positive integer β=logb n and solve for b,

b = n1/β so that by proposition 4, the query cost
is O

(
βd

)
and by proposition 5, the update cost is

O
(
nd/ββd

)
.

One drawback to more scalable updates is that
more (fixed) steps are required to compute the
range sum queries. Since increasing β slows down
queries but improves the update cost, one might ask
what the best compromise for β could be. Geffner
et al. [8] measured the overall complexity by mul-
tiplying the range sum query cost with the update
cost. For the PyRPS method, the overall complex-
ity is nd/ββ2d by the proof of theorem 1. How-
ever, by choosing any fixed integer b ≥ 2 and let-
ting β = logb n, we have an overall complexity of
(b− 1)d log2d

b n which is clearly better for n large
than any fixed β since it is logarithmic whereas
nd/ββ2d is polynomial in n. In short, the overall
complexity is minimized when β is large and this is
discussed in the next subsection.

4.1 Optimization of the polylogarith-

mic case: PyRPS(log)

The PyRPS method with β = logb n might still be
interesting even though it no longer offers O(1)
queries since it minimizes the overall complexity.
By propositions 4 and 5, we have that the over-
all complexity is (b− 1)d log2d

b n and so the best
choice for b arises when (b−1)d/ ln2d b is a mini-
mum. Since b must be an integer, this minimum is
reached at b = 5 (see Fig. 1).

Lemma 1 In a polylogarithmic PyRPS approach,

the overall computational cost defined as the prod-

uct of the query cost with the update cost is min-

imized when the base b = 5 when d = 1 or b = 2
when d ≥ 2 .

4.2 Variable Bases

One of the assumptions made so far was that the
chosen base b was constant. Other authors have ex-
perimented with variable bases [3] thus generating
a large family of algorithms with various proper-
ties. This is especially applicable in the case of an
algorithm such as PyRPS where we fix the height
of the tree a priori. We begin by stating the variable
base equivalent to Algorithm 2.

Algorithm 3 (In-Place Oblique Wavelet Trans-

form with Variable Base) Suppose we are given β

7

1

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7 8

(b
-1

)d
/l
o

g
2
d
(b

)

b

d=1
d=2
d=3

Figure 1: The estimated overall computational cost
of a wavelet-based range sum system depends on
the base b as (b−1)d/ ln2d b. For d = 1, the mini-
mum is reached at b = 5.

integers bi > 1 such that ∏β
i=1 bi = n and an array

of values xi, i = 0, . . . ,n− 1. Let Bk = ∏k
i=1 bi for

k = 0, . . . ,β with B0 = 1, the transforms at depth

j = 0, . . . ,β are given by

xB jk+B j−1← xB jk+B j−1,

xB jk+2B j−1← xB jk+2B j−1 + xB jk+B j−1, . . . ,

xB j+1k−1← xB j+1k−1 + xB j+1k−B j−1

for k = 0,1, . . . ,n/B j−1.

Using Algorithm 3, queries still take time βd

since the depth of the tree is β. However, updates

now require time
(

∑β
i=1 bi

)d

instead of nd/ββd as

in the proof of Theorem 1. Since the query time
remains the same, the question is whether hav-
ing a variable base can improve the update cost.
To answer this question, we find the minimum of

∑β
i=1 bi over b1, . . . ,bβ given ∏β

i=1 bi = n. The La-

grangian of this problem is given by L = ∑β
i=1 bi−

λ
(

∏β
i=1 bi−n

)
and thus ∂L

∂bk
= 1− λ ∏β

i=1,i 6=k bi.

Setting ∂L
∂bk

= 0, we have λ ∏β
i=1 bi = bk ∀k. It fol-

lows that b1 = . . . = bβ and thus b1 = . . . = bβ =

n1/β. In other words, for large n, the best choice is
not to use a variable base.

5 Practical Implementation

and Future Work

In implementing the PyRPS method for high per-
formance purposes, several issues arise. For ex-
ample, it might be desirable to buffer some of the
topmost cells of the tree since a given cell is used
much more often in queries and updates. In prac-
tice, it will often be convenient because a large frac-
tion, 1−1/bd , of the wavelet coefficients are at the
lowest level. It could also justify the use of a vari-
able base approach to tailor the tree to the amount
of memory available for caching the upper part of
the tree. For example, if b = 5 and d = 3, 99% of
all coefficients are at the lowest level of the tree.
Second of all, the lowest level coefficients are set
in blocks of size bd − 1 often updated at the same
time which suggests that an efficient implementa-
tion would allow for fast “block updates”. Again,
the need to control the size of these blocks should
be considered in the choice of the base b.

The RPS method suggests we keep the overlay
in memory which implies a memory cost of (n/b)d

cells where b is the size of the overlay or nd/2 when
we choose b =

√
n to optimize the update com-

plexity [13] and as pointed out by the authors, a
smaller b might be chosen to optimize to overlay
given the memory available. The next proposition
makes precise how much of a buffer size we need to
reduce queries processing by up to a fraction ξ: we
make the assumption here that buffered cells can be
accessed without noticeable cost when compared to
permanent storage retrieval.

Proposition 6 Whether we consider PyRPS or

PyRPS(log), assuming the tree has height β, to

buffer the first ξβ levels of the tree requires storage

space of ndξ cells.

Proof. We have n = bβ and the first ξβ levels of

the tree have
(

bξβ
)d

= ndξ cells. The result is the

same no matter what b is and applies to all base b

trees.
For example, if the tree has height 10 and we

want to buffer 25% (ξ = 0.25), then we need to
buffer nd/4 cells. This tells us that to keep the
memory requirements constant, we need to set ξ =

κ
ln(nd)

where κ is some constant and therefore, un-

surprisingly, for very large data cubes with respect
to the memory available, buffering won’t provide
significant help.

8

Next, we present some early experimental re-
sults to elaborate on how a change of basis impact
the range sum queries and updates performance.
A data cube with n = 256 and d = 3 is generated
using random data. A 32 Bytes integer value is
stored in each cell so that the data cube requires 64
Megabytes of storage. Using the PyRPS method,
we choose β = 2 to get b = 16 (shallow tree), and
β = 8 to get b = 2 (deep tree). We also use the
parameters b = 4 (β = 4) as a compromise. Aver-
age time for prefix sum queries (see equation 1) as
well as average time for one-cell updates is given
(Table 7). The one-time cost for the pyramidal
transform is also given. The RPS method is not in-
cluded but is computationally equivalent to the case
β = 2. The benchmarking was done using Sun Java
1.4 on a Pentium 3 (1.133 GHz) laptop running
Windows 2000. A flat binary file with no buffer-
ing was used for storage. These two settings pro-
vide very different performances with either faster
queries (β = 2), faster updates (β = 8), or a good
compromise (β = 4). Clearly, in a system where
queries are much more frequent than updates, we
might want to choose b > 2.

b β transform (min) prefix sum (µs) update (µs)

16 2 43.9 1.6 3105
4 4 44.0 3.9 274
2 8 43.9 7.9 98

Table 7: Average processing time for prefix sums
and one-cell updates for different PyRPS parame-
ters with n = 256 and d = 3 using Java on a Pentium
3 processor.

6 Conclusion

B−adic wavelets [11, 6] are useful in building pyra-
midal aggregates as the base size can be used to
control the height of the tree or to optimize it over-
all (lemma 1). The wavelet tree itself proves to be
a valuable paradigm even though the usual spectral
analysis properties are of little use for simple range
sum queries and thus, oblique or “stripped-down”
wavelets [1] are a good choice.

The source code to reproduce the tables of this
paper is freely available from the author.

About the Author

Daniel Lemire holds a Ph.D. in Engineering
Mathematics from the École Polytechnique de
Montréal and his B.Sc. and M.Sc. from the Univer-
sity of Toronto. Currently, he is a research officer at
the Institute for Information Technology (NRC) in
the e-Business Research Group. Previously, he has
been a professor at Acadia University, an industry
consultant, and a postdoctoral fellow at the Insti-
tut de génie biomédical. His research background
includes wavelets, data processing, telehealth, and
subdivision schemes (CAGD). He can be reached
at lemire@ondelette.com.

References

[1] A. Aldroubi, Oblique Multiwavelet Bases:
Examples. SPIE Conference on Mathematical
Imaging: Wavelet Applications in Signal and
Image Processing IV, vol. 2825, Part I, pages
54-64, Denver CO, USA, August 1996.

[2] K. Chakrabarti, M. Garofalakis, R. Rastogi,
and K. Shim. Approximate Query Processing
Using Wavelets. In Proc. VLDB, pages 111-
122, Cairo, Egypt, September 2000.

[3] C. Y. Chan, Y. E. Ioannidis. Hierarchical Pre-
fix Cubes for Range-Sum Queries. In Proc.
VLDB, pages 675-686, Edinburgh, Scotland,
UK, September 1999.

[4] I. Daubechies. Ten lectures on wavelets;
CBMS-NSF Regional Conference Series in
Appl. Math. 61, 1992.

[5] G. Deslauriers and S. Dubuc, Symmetric It-
erative Interpolation Processes, Constructive
Approximation 5, pages 49-68, 1989.

[6] G. Deslauriers, S. Dubuc, and D.
Lemire, Derivatives of the Lagrange It-
erative Interpolation and b−adic Cohen-
Daubechies-Feauveau Wavelets, Techni-
cal Report EPM/RT-97/28, École Poly-
technique de Montréal, Montreal, April
1997. (http://www.ondelette.com/lemire/-
documents/publications/echap2.zip)

[7] D. Donoho , P. Yu. Deslauriers-Dubuc: Ten
Years After; in Deslauriers G.,Dubuc S.
(Eds), CRM Proceedings and Lecture Notes
Vol. 18, 1999.

9

[8] S. Geffner, D. Agrawal, A. E. Abbadi, T. R.
Smith. Relative Prefix Sums: An Efficient
Approach for Querying Dynamic OLAP Data
Cubes. In Proc. of ICDE, pages 328-335, Syd-
ney, Australia, March 1999.

[9] J. Gray, A. Bosworth, A. Layman, H. Pira-
hesh. Data cube: A relational aggregation op-
erator generalizing group-by, cross-tabs and
subtotals. In Proc. ICDE 1996, pages 131-
139, 1996.

[10] A. Haar, Zur Theorie der orthogonalen
Funktionen-Systeme, Math. Ann., 69, pages
331-371, 1910.

[11] P. N. Heller, Rank M wavelets with N van-
ishing moments, SIAM J. Math. Analysis 16,
1995.

[12] J. M. Hellerstein. Online Processing Redux,
IEEE Data Engineering Bulletin, September
1997

[13] C. Ho, R.Agrawal, N. Megiddo, R. Srikant.
Range Queries in OLAP Data Cubes. In Proc.
ACM SIGMOD, June 1996.

[14] Y. Matias, J. S. Vitter, M. Wang. Dynamic
Maintenance of Wavelet-Based Histograms.
In proc. VLDB, pages 101-110, Cairo, Egypt,
September 2000.

[15] R. R. Schmidt and C. Shahabi. ProPolyne:
A Fast Wavelet-based Algorithm for Progres-
sive Evaluation of Polynomial Range-Sum
Queries (extended version), VIII. Conference
on Extending Database Technology, Prague,
March 2002.

[16] J. S. Vitter, M. Wang. Approximate Com-
putation of Multidimensional Aggregates of
Sparse Data Using Wavelets. In Proc. ACM
CIKM, pages 193-204, Washington D.C.,
November 1998.

[17] J. Vitter, M. Wang, B. R. Iyer. Data Cube
Approximation and Histograms via Wavelets.
In Proc. of ACM CIKM, pages 96-104,
Bethesda, Maryland, USA, November 1998.

[18] Y. Wu, D. Agrawal, A. E. Abbadi. Using
Wavelet Decomposition to Support Progres-
sive and Approximate Range-Sum Queries
over Data Cubes. In Proc. ACM CIKM,

pages 414-421, McLean, VA, USA, Novem-
ber 2000.

10

