Sucrose synthesis of nanoparticulate alumina

This publication could be one of several versions: author’s original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

Publisher’s version / Version de l'éditeur:
https://doi.org/10.1023/A:1020937224402

Sucrose synthesis of nanoparticulate alumina

NRCC-45653

A version of this document is published in / Une version de ce document se trouve dans :
The synthesis of nanoparticulate α-Al_2O_3 at 600 °C using a sucrose-based polymer dispersion technique was reported recently by Das et al. [1]. This is of interest, as γ-Al_2O_3 is frequently an unwanted intermediate phase in the conversion of nanoparticulate amorphous alumina into nanoparticulate α-Al_2O_3. γ-Al_2O_3 has a relatively disordered structure, but usually requires temperatures in the order of 1100 °C to transform completely to the stable α-Al_2O_3 phase [2].

Dispersion of cations in a polymer matrix has been widely used as a “chimie douce” method for the production of oxide materials at low temperatures. The “Pechini” process, where citric acid and ethylene glycol are co-polymerized to form a resin is a particularly common variant [3]. A highly acidic sucrose solution can self-polymerize or cross-link with polyvinyl alcohol (PVA) to form a heavier and more 3 dimensional resin [4]. The charred polymer also acts as a fuel during calcination, raising the local temperature briefly to much higher temperatures than the equilibrium temperature in the furnace.

The extent of cation dispersion in a matrix has been seen to affect phase composition and crystallite size in other systems [3]. Consequently a study was undertaken to ascertain the effect of drastically increasing the sucrose content. This would be expected to increase the surface area of the material, but as the sucrose : Al ratio is greater than 18 : 1, calcining at 600 °C should still produce α-Al_2O_3 according to the hypothesis of Das et al. [1].

The resin was produced by adding 250 ml of 10 M sucrose solution acidified to a pH of approximately 1 with nitric acid, to 3.75 g of Al(NO$_3$)$_3$ · 9H$_2$O. This formula yielded a 250 : 1 molar ratio. The intimate mixture was caramelized on a hot plate at approximately 250 °C to reduce the aqueous solution to a thick syrup. Afterwards, it was placed in an air-circulating oven at 200 °C for 18 h resulting in a dehydrated charred resin. The resulting carbon-rich precursor was calcined in a muffle furnace at 600 °C for 24 h to produce the aluminium oxide material.

Samples of this material were further calcined in a zirconia crucible in air at temperatures of 1050, 1150 and 1250 °C to examine the ease of α-Al_2O_3 formation from this very high surface area γ-Al_2O_3.

X-ray diffraction data were obtained using a Bruker D8 diffractometer equipped with a HISTAR 2-dimensional area detector at a sample-detector distance of 15.3 cm. The tube angle was fixed at 10° using a 1 mm diameter snout collimator, and frames taken using Cu K$_\alpha$ radiation at detector angles of 15, 30 and 45° for 30 min durations. The samples were mounted on a quartz zero background holder. 1-D powder patterns were obtained by integrating the 2-D data across a fixed chi range, and merging the three resulting patterns into one. The instrument broadening function was determined by obtaining frames from the NIST 660a LaB$_6$ standard, and crystallite size obtained by peak fitting with the Bruker TOPAS software [5].

Scanning electron microscope (SEM) micrographs were taken of the alumina using a Cambridge Stereoscan 250. Samples were prepared with carbon adhesives on aluminium stubs, and then sputter-coated with gold. The surface area values of the powders were obtained using BET analysis with nitrogen gas as the absorbent. A Quantachrome Quantasorb system was used for the sorption measurements.

After calcination of the charred precursor at 600 °C, the material obtained was a white, fluffy powder with a very low density. On examination of this material by SEM, a foil-like microstructure (Fig. 1) was observed. This microstructure probably resulted from preferential growth around the resin pore surfaces. Attempts to resolve the individual particles with a high resolution Field emission gun (FEG) SEM tentatively suggested a particle size of 10–20 nm, however it was not possible to obtain well-resolved images due to charging of the sample.

The surface area of the material was found to be approximately 290 m2/g, as opposed to the 194 m2/g reported by Das et al. [1]. Given the greater organic content in this precursor, this increase was not unexpected, but may be of interest given the use of γ-Al_2O_3 as a catalyst support.

X-ray diffraction of the 600 °C material yielded a poor crystalline pattern (Fig. 2), which could be assigned as γ-Al_2O_3. Firing at 1050 °C for 30 min yielded a more ordered γ-Al_2O_3 pattern, while firing for 60 min gave rise to a number of spots corresponding to a few crystallites of α-Al_2O_3. The significance of spots in a frame is discussed below. Increasing the temperature to 1150 °C for 60 min led to the formation of a two phase mixture of γ-Al_2O_3 and nanocrystalline α-Al_2O_3 powder with a 17.5 nm crystallite size. Firing at 1250 °C for 60 min led to the formation of 25 nm α-Al_2O_3 with β-Al_2O_3 present as a minor phase. β-Al_2O_3 does not exist as a pure alumina polymorph [6], so the presence of β-Al_2O_3 could be due to trace sodium impurities, producing phases such as NaAl$_2$O$_4$.7.
The transition to α-Al_2O_3 seemed to be more sluggish in this material than has been observed by other workers [7, 8]. This was not totally unexpected, as the material density of γ-Al_2O_3 has been shown to affect the transition, i.e. dense pellets transform to α-Al_2O_3 faster than a loose powder [9]. There are possible indications of the presence of the δ-Al_2O_3 and/or θ-Al_2O_3 phases in the 1050 and 1150 $^\circ$C calcined materials from some peak broadening and “shoulders”. These known intermediate phases, often seen in the γ- to α-Al_2O_3 phase transition, have similar diffraction patterns to γ-Al_2O_3, but the experimental reflections are very diffuse, making it very difficult to assign peaks unambiguously.

Use of the area detector facilitated observation of a small number of large isolated nucleating crystallites that would probably have been overlooked by conventional powder diffraction. Such spots appear in a 2-D frame effectively as a single crystal reflection spot. Rotating the sample moves the spot, while remounting the sample can give rise to different reflections. For example, a spot corresponding to the 52.6 $^\circ$[024] α-Al_2O_3 reflection was observed in the as-prepared powder as seen in Fig. 3. In this case the spot was within the range of χ integration, so a small reflection is present in Fig. 2 at the corresponding 2 theta. For comparison, Fig. 4 shows the 23–56 $^\circ$ 2 theta frame of the 1150 $^\circ$C calcined powder which shows a uniform, untextured powder with a good powder average.

In summary, a dispersed alumina with a very high surface area has been prepared by complexation and...
dispersion in a sucrose solution, which was then charred and calcined to produce the final product. The material calcined at 600 °C in this study differed from that described by Das et al. [1], in that it was poor crystalline γ-Al₂O₃ and had a much higher surface area, although it did appear to contain isolated α-Al₂O₃ crystallites. These differences may be explained by the use of a much higher sucrose to cation ratio. The resin in this study was produced using more uniform heating than that attainable using a hotplate alone, which in turn produced a more homogeneous resin. The hypothesis proposed by Das et al. [1] is not supported by the results presented here, but the synthesis conditions used were far removed (over 1 order of magnitude increase in the sucrose excess) from those used by Das et al. The sluggish transition between γ- and α-Al₂O₃ may also be attributed to the extremely low density of the material [9]. Heating at 1050 °C yielded an increasing number of diffraction spots from α-Al₂O₃ crystallites, conventional α-Al₂O₃ powder diffraction arcs appearing at 1150 °C. Calcination at 1250 °C resulted in a fluffy powder of α-Al₂O₃ with a crystallite size of approximately 25 nm.

Acknowledgment
The authors would like to thank Dr. Isobel Davidson for discussions and assistance during the preparation of this manuscript.

References

Received 13 May and accepted 16 July 2002