
Publisher’s version  /   Version de l'éditeur: 

Machine Learning, 79, 1-2, pp. 105-121, 2010-05

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 

first page of the publication for their contact information. 

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 

acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien 

DOI ci-dessous.

https://doi.org/10.1007/s10994-009-5151-5

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

A co-classification approach to learning from multilingual corpora
Amini, Massih-Reza; Goutte, Cyril

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=3bbbda38-91cf-4a07-8c27-4872100b5f16

https://publications-cnrc.canada.ca/fra/voir/objet/?id=3bbbda38-91cf-4a07-8c27-4872100b5f16



Mach Learn (2010) 79: 105–121

DOI 10.1007/s10994-009-5151-5

A co-classification approach to learning

from multilingual corpora

Massih-Reza Amini · Cyril Goutte

Received: 26 February 2009 / Revised: 14 September 2009 / Accepted: 23 September 2009 /

Published online: 29 October 2009

© The Author(s) 2009

Abstract We address the problem of learning text categorization from a corpus of multilin-

gual documents. We propose a multiview learning, co-regularization approach, in which we

consider each language as a separate source, and minimize a joint loss that combines mono-

lingual classification losses in each language while ensuring consistency of the categoriza-

tion across languages. We derive training algorithms for logistic regression and boosting,

and show that the resulting categorizers outperform models trained independently on each

language, and even, most of the times, models trained on the joint bilingual data. Experi-

ments are carried out on a multilingual extension of the RCV2 corpus, which is available for

benchmarking.

Keywords Text categorization · Multilingual data · Logistic regression · Boosting

1 Introduction

In this paper we consider the problem of boosting the performance of multiple monolingual

document categorizers by using a corpus of multilingual documents. In addition, we inves-

tigate the more specific situation where Machine Translation is used to produce a parallel

corpus.

In many contexts, people are confronted with documents available in more than one

language. This is a typical situation in many multilingual regions of the world, including

many regions of Europe and, for example, most legal and regulatory documents in Canada.

However, document categorization models are mostly developed in a monolingual context,

typically for resource-rich languages such as English.

The situation we are addressing is when documents are available in two (or more) lan-

guages and share the same set of categories. In that case, it is obviously possible to train
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independent monolingual categorizers on each part of the corpus. However this approach

ignores the potentially richer information available from another language, and may be im-

practical when the number of available documents in the different languages is very uneven.

The challenge is actually to develop a method which is able to leverage the multilingual

data in order to produce performance that is higher than what one gets from the independent

monolingual categorizers alone.

We focus on the situation where each document is available in two languages, i.e. two

linguistic sources. In the particular regulatory context of Canada, this is a very common

situation. It seems likely to be equally typical in many national or supra-national contexts

(such as the European Union). We propose to learn statistical categorizers by optimizing

a joint loss with an additional constraint on the divergence between the outputs produced

on the different languages. We therefore minimize the classification loss for both classifiers

under the constraint that their outputs are as similar as possible on documents and their

translations. We show that this produces a significant increase in performance over indepen-

dent categorizers trained on monolingual data, and over bilingual categorizers trained on the

concatenated views.

We insist on the fact that our goal is to obtain a number of categorizer that each work on

monolingual data. Although we assume that the training set contains parallel documents, at

test time, we only use monolingual documents. In addition, although our method relies on a

parallel corpus, we later relax this assumption to the more general case of a partly parallel

or even comparable corpus, i.e. a set of texts that deal with the same topics (e.g. Adeva et

al. 2005), without being translations of each other.

As an aside, we also investigate the use of Machine Translation (MT) in a multilingual

categorization setting. In principle, a translation is supposed to contain the same information

as the original, and therefore may not be very helpful to improve categorization. However, in

the context of usual categorization models, which typically rely on bag-of-words or similar

feature spaces with short-range dependencies, translation offers the possibility to enrich and

disambiguate the text, especially for short documents. There have been renewed expecta-

tions regarding the usefulness of MT lately. We show that although a long way from being

totally fluent, state-of-the-art statistical MT can indeed be used in a document categoriza-

tion context and improve the categorization decision. In order to encourage further work on

multilingual text categorization, we also release publicly a preprocessed version of the 186K

multilingual Reuters documents and translations that were used in our experiments.

The following section relates our work to various previously described methods. In

Sect. 3, we introduce the model and the estimation procedure. Section 4 will present the

experimental settings and the results. We discuss these results and conclude in Sects. 5

and 6.

2 (Un)related work

Let us first position our work with respect to various existing methods.

First, there are several contexts in which multilingual document categorization may be

invoked, which are in fact very different from the problem we address here. One such setting

is cross-language text categorization (CLTC, Bel et al. 2003), the categorization analogue

to cross-language information retrieval (CLIR, Oard and Diekema 1998). In CLTC, a large

monolingual corpus is available in one resource-rich (typically English) language, and a

document in another language must be categorized in the same set of categories. For exam-

ple, a news item written in Maltese must be categorized in a news hierarchy learned from
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English documents. This is a very exciting problem, however, in our setting, we assume

that documents are available in both languages, and we are interested in learning improved

monolingual categorizers in each of the different languages, i.e. categorizers that predict

categories directly from a monolingual document.

Another totally unrelated problem that is sometimes referred to as multilingual text cat-

egorization is the task of finding which language a text is written in (e.g. English, Maltese,

Afrikaans, etc.) (Cavnar and Trenkle 1994). This is more properly known as language iden-

tification or language guessing and is widely considered a solved problem except in fringe

situations (such as very short sentences). In our context we usually know which languages

our documents are written in, and the target categories are not language related. In fact,

categories are by definition of the problem identical across all languages.

Multiview learning has become a popular research topic in the past years. Two important

classes of techniques are the multiple kernel learning approach (e.g. Bach et al. 2004), and

techniques relying on (kernel) Canonical Correlation Analysis (CCA, e.g. Farquhar et al.

2005; Kakade and Foster 2007). Multiple kernel learning typically assumes that all views

of an example are available during training and testing, for example the same object viewed

from different angles in object recognition. By contrast, we address a problem where mul-

tiple views (i.e. original or translation) may or may not be available in the training set, and

we are interested in learning classifiers that can predict based on one language version of a

document, i.e. without requiring to translate documents before testing.

CCA identifies matching maximally-correlated subspaces in the two views, that may be

used to project data before learning is performed, or integrated with learning (Farquhar et

al. 2005). The CCA subspaces may then be used at test time in either, or both, views. Note

that CCA does not explicitely attempt to enforce agreement in the outputs of the classifiers

obtained on each subspaces. Multiview Fisher Discriminant Analysis (Diethe et al. 2008)

addresses that issue, and seems closer to the approach we follow here. However we have

not considered this technique here due to concerns about the computational complexity and

scalability to large document collections.

Our co-classification algorithm is in fact an instance of co-regularization (Sindhwani et

al. 2005; Brefeld et al. 2006). One key difference is that instead of regularizing the dis-

agreement between the classifiers in the two views by the squared error, we use the KL

divergence. In addition to having a natural interpretation in terms of probabilistic classifier

output, that allows us to naturally propose a boosting version of the co-classification ap-

proach. Our method for solving the co-regularized classification problem is also different

from the co-regularized least squares described by Sindhwani et al. (2005) and Brefeld et al.

(2006).

3 Model

We consider two input spaces X1 ⊂ R
d and X2 ⊂ R

p , and an output space Y . We take

Y = {−1,+1} since we restrict our presentation to binary classification (we will address

the extension to multiclass in Sect. 5.3). We assume that we have a set of m independently

identically distributed labeled bilingual documents, {(x
(1)
i , x

(2)
i , yi); i = 1 . . .m}, sampled

from a fixed but unknown distribution P over X1 × X2 × Y . Input vector x(1) is the feature

vector representing a document in one language, while x(2) is the feature vector representing

the same document in another language, and y is the class label associated to the document.

The two versions of the same document are typically translations of each other, although

which direction the translation goes is not important for our purpose.
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Each language offers a different view on the same document, and we can form two

monolingual training sets, S1 = {(x
(1)
i , yi); i = 1 . . .m} ∈ (X1 × Y)m and S2 = {(x

(2)
i , yi); i =

1 . . .m} ∈ (X2 × Y)m. Note that for a given i, label yi is the same in both sets as both versions

of the same document cover the same topic.

The problem we address is to construct two classifiers f1 : X1 → Y and f2 : X2 → Y from

S1 and S2 so that a test document written in either language may be classified as accurately

as possible. Of course, it is possible to independently train f1 on S1 and f2 on S2. Our goal

is therefore to propose an algorithm that results in classifiers that are more efficient than if

they were trained separately on the monolingual data.

3.1 The co-classification algorithm

Our basic assumption is that a document and its translated version convey the same idea but

in different ways. The difference is mostly due to the fact that the expression of an idea in

each language makes use of different words. Our aim here is to take advantage of these two

complementary views of the same information to train two different classifiers. In addition,

as both views of a document have matching labels, we want the output of the classifiers

working on either view to be in agreement. Our learning paradigm expresses this idea by

relying on:

• A monolingual misclassification cost for each classifier in each language/view,

• A disagreement cost to constrain decisions to be similar in both languages.

More precisely, we look for functions f1 and f2 which not only achieve good performance

on the training set in their respective language, but also agree with each other. In the fol-

lowing, we assume that classifiers f1 and f2 have corresponding underlying real-valued

functions h1 and h2 (e.g. output of a SVM or probability for a generative model), and are

obtained by thresholding using the sign function; f1 = sign(h1) and f2 = sign(h2).

Our framework relies on iteratively and alternately optimizing the classifier h from one

view (h = hℓ, ℓ ∈ {1,2}), view while holding the classifier from the other view (h∗ = h3−ℓ)

fixed. This is done by minimizing a monolingual classification loss in that view, regularized

by a divergence term which constrains the output of the trained classifier to be similar to that

of the classifier previously learned in the other view. Without loss of generality, let us now

describe the stage where we optimize functions h from one view, while leaving the function

from the other view, h∗, fixed. Following the principle stated above, we seek the function h

that minimizes the following objective function:

L(h,S,h∗, S∗, λ) = C(h,S) + λd(h,S,h∗, S∗). (1)

Where C(h,S) is the (monolingual) cost of h on training set S, d(h,S,h∗, S∗) measures

the divergence between the two classifiers on the same documents in both views and λ is a

discount factor which modulates the influence of the disagreement cost on the optimization.

For the monolingual cost, we consider the standard misclassification error:

C(h,S) =
1

m

m
∑

i=1

[[yih(xi) ≤ 0]],

where [[π ]] is equal to 1 if the predicate π is true, and 0 otherwise. We usually replace it

with an appropriate convex and differentiable proxy instead. Following standard practice in
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Machine Learning algorithms, we replace [[z ≤ 0]] by the (convex and differentiable) upper

bound a log(1 + e−z), with a = (log 2)−1. The monolingual misclassification cost becomes:

C(h,S) =
1

m

m
∑

i=1

a log(1 + exp(−yih(xi))).

Assuming that each classifier output may be turned into a posterior class probability,

we measure the disagreement between the output distributions for each view using the

Kullback-Leibler (KL) divergence. Using the sigmoid function σ(z) = (1 + e−z)−1 to map

the real-valued outputs of our functions h and h∗ into a probability, and assuming that the

reference distribution is the output of the classifier learned on the other view, h∗, the dis-

agreement d(h,S,h∗, S∗) becomes

d(h,S,h∗, S∗) =
1

m

m
∑

i=1

kl(σ (h∗(x∗
i ))||σ(h(xi))),

where for two binary probabilities p and q , the KL divergence is defined as:

kl(p||q) = p log

(
p

q

)

+ (1 − p) log

(
1 − p

1 − q

)

.

There are two reasons for choosing the KL divergence: First, it is the natural equivalent

in the classification context of the l2 norm used for regression in previous work on co-

regularization (Sindhwani et al. 2005; Brefeld et al. 2006; Rosenberg and Bartlett 2007);

Second, it allows the derivation of a boosting approach for minimizing the local objective

function (1), as described in Sect. 3.2. That objective function now becomes:

L(h,S,h∗, S∗, λ) =
1

m

m
∑

i=1

{a log(1 + exp(−yih(xi))) + λkl(σ (h∗(x∗
i ))||σ(h(xi)))}. (2)

In the case where h is a linear function, h(x) = 〈β,x〉, it can be verified using calculus

that the derivative of L(h,S,h∗, S∗, λ) with respect to parameters β is:

∇β L =
1

m

∑

x∈S

x
(

ay(σ (yh(x)) − 1) + λ(σ(h(x)) − σ(h∗(x∗)))
)

. (3)

From the form of the derivative, it becomes apparent that the gradient is intimately related

to the difference in classifier outputs, i.e., a large deviation (σ (h(x)) − σ(h∗(x∗))) makes

the gradient larger in either direction.

The gradient from (3) can be plugged into any gradient-based minimization algorithm in

order to obtain the linear weights which minimize L(h,S,h∗, S∗, λ). In the next section, we

present the optimization of the cost function (1) as the minimization of a Bregman distance

and show how this problem can be solved by a boosting-like algorithm.

Once the classifier h has been learned, we reverse the roles of h and h∗ (as well as S and

S∗), and optimize L(h∗, S∗, h, S,λ). This alternating optimization of partial cost functions

bears similarity with the block-coordinate descent technique (Bertsekas 1999). At each itera-

tion, block coordinate descent splits variables into two subsets, the set of the active variables

and the set of inactive ones, then minimizes the objective function along active dimensions
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Algorithm 1: The co-classification algorithm

Input : Two labeled sets S1 and S2;

A discount factor λ.

Initialize: t ← 1;

h
(0)

1
def

= argminh C(h,S1);

h
(0)

2
def

= argminh C(h,S2);

repeat

Learn h
(t)

1 = argminh L(h,S1, h
(t−1)

2 , S2, λ);

Learn h
(t)

2 = argminh L(h,S2, h
(t)

1 , S1, λ);

t ← t + 1;

until Convergence of �(h
(t)

1 , S1, h
(t)

2 , S2, λ) (eq. 4) to a local minimum ;

Output : f1 = sign(h
(t)

1 ) and f2 = sign(h
(t)

2 )

while inactive variables are fixed at current values. In our case, the global objective function

is:

�(h1, S1, h2, S2, λ) = C(h1, S1) + C(h2, S2)
︸ ︷︷ ︸

misclassification

+λD(h1, S1, h2, S2)
︸ ︷︷ ︸

disagreement

. (4)

Where D(h1, S1, h2, S2) = d(h1, S1, h2, S2) + d(h2, S2, h1, S1) is the symmetrized KL di-

vergence, measuring the corpus-level disagreement.

Notice that the symmetrized KL divergence is a convex function, with respect to the

actual distributions on which the divergence is measured, but not necessarily with respect to

the parameters of these distributions. Notice also that our algorithm is not exactly a block-

coordinate descent technique: because of the asymmetry in the KL divergence used in (2),

we only minimize an approximate version of the global loss at each iteration.

Algorithm 1 summarizes our overall training strategy, which we call co-classification.

Each monolingual classifier is first initialized on the monolingual cost alone, then we al-

ternate optimization of either h1 or h2 while keeping the other function constant, until

�(h1, S1, h2, S2, λ) has reached a (possibly local) minimum.

We notice that this algorithm is reminiscent of the co-training algorithm (Blum and

Mitchell 1998) in the sense that (1) we alternate between two views, and (2) the classi-

fier that is learned in one view is affected by the output of the classifier learned in the other

view, through the disagreement cost. Note however that each classifier does not change the

labeling of examples, which is assumed to be fixed. However, by similarity with the alternat-

ing iterative process of learning a classifier on the basis of the decisions of another classifier,

we refer to our proposed approach as co-classification.

In the following section, we extend the framework proposed by Collins et al. (2000) for

learning h with a boosting-like algorithm which optimizes (2).

3.2 A boosting-like algorithm to learn the view-specific classifiers

In this section we present the loss-minimization of

R(h,S,h∗, S∗, λ) =
1

m

m
∑

i=1

{a log(1 + exp(−yih(xi))) + λkl(σ (h∗(x∗
i ))||σ(h(xi)))} (5)
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as the minimization of a Bregman distance. This equivalence will allow us to employ the

boosting-like parallel-update optimization algorithm proposed by Collins et al. (2000) to

learn a linear classifier h : x �→ 〈β,x〉 minimizing (5).

A Bregman distance BF of a convex, continuously differentiable function F : � → R on

a set of closed convex set � is defined as

∀p,q ∈ �, BF (p||q) def

= F(p) − F(q) − 〈∇F(q), (p − q)〉.

One optimization problem arising from a Bregman distance is to find a vector p∗ ∈ �,

closest to a given vector q0 ∈ � with respect to BF , under the set of linear constraints {p ∈

�|ptM = p̃tM}, where, p̃ ∈ � is a specified vector and M is a n × d matrix, with n the

number of examples in the training set and d the dimension of the problem.1

Defining the Legendre transform as:

LF (q,Mβ) def

= argmin
p∈�

(BF (p||q) + 〈Mβ,p〉),

the dual optimization problem can be stated as finding a vector q in the closure Q̄ of the

set Q = {LF (q,Mβ)|β ∈ R
p}, for which BF (p̃||q) is the lowest, under the set of linear

constraints {q ∈ �|q tM = p̃tM}.

It has been shown that both of these optimization problems have the same unique solution

(Topsoe 1979; Csiszár 1995; Lafferty et al. 1999). Moreover, Collins et al. (2000) have pro-

posed a single parallel-update optimization algorithm to find this solution in the dual form.

They have further shown that their algorithm is a general procedure for solving problems

which aim to minimize the exponential loss, like in Adaboost, or a log-likelihood loss, like

in logistic regression. Indeed, they showed the equivalence of these two loss minimization

problems in terms of Bregman distance optimization.

In order to apply Algorithm 2, we have to define a continuously differentiable function

F such that by properly setting �, p̃, q0 and M , the Bregman distance BF (0||LF (q0,Mβ))

is equal to (5). Similarly to Collins et al. (2000), we choose:

∀p ∈ � = [0,1]n, F (p) =

n
∑

i=1

αi (pi logpi + (1 − pi) log(1 − pi)) ,

where αi are non-negative real-valued weights associated to examples xi . This yields:

∀p,q ∈ � × �, BF (p||q) =

n
∑

i=1

αi

(

pi log

(
pi

qi

)

+ (1 − pi) log

(
1 − pi

1 − qi

))

, (6)

and

∀i, LF (q, v)i =
qie

−
vi
αi

1 − qi + qie
−

vi
αi

. (7)

1We have deliberately set the number of examples to n as in our equivalent rewriting of the minimization

problem the latter is not exactly m.
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Algorithm 2: The parallel-update optimization algorithm described in Collins et al.

(2000)

Input : Matrix M ∈ [−1,1]n×d .

Initialize: Let β = 0

for t = 1,2, . . . do
Let qt be the solution of LF (q0,Mβt );

for j = 1, . . . , d do

W+
t,j =

∑

i:sign(Mij )=+1 qt,i |Mij |;

W−
t,j =

∑

i:sign(Mij )=−1 qt,i |Mij |;

δt,j = 1
2

log

(
W+

t,j

W−
t,j

)

;

end

βt+1 = βt + δt ;

end

Output : The sequence β1, β2, . . . verifying

lim
t→∞

BF (0||LF (q0,Mβt )) = inf
β∈Rd

BF (0||LF (q0,Mβt ))

Using (6) and (7), and setting q0 = 1
2
1, the vector with all components set to 1

2
, and M

the matrix such that ∀i, j,Mij = αiyix
j

i ,2 we have:

BF (0||LF (q0,Mβ)) =

n
∑

i=1

αi log(1 + e−yi 〈β,xi 〉). (8)

By developing (5), we get:

R(h,S,h∗, S∗, λ) =
1

m

m
∑

i=1

{(

a + yiλσ(h∗(x∗
i )) + λ[[yi = −1]]

)

log(1 + e−yih(xi ))

+λ([[yi = 1]] − yiσ(h∗(x∗
i ))) log(1 + eyih(xi ))

}

+ K, (9)

where K does not depend on h.

In order to make (9) identical to (8) (up to a constant), we create, for each example

(xi, yi), a new example (xi,−yi) (which makes n = 2m), and set the weight as follows: for

each example (xi, yi), take αi = 1
m
(a + yiλσ(h∗(x∗

i )) + [[yi = −1]]λ), while for its counter-

part (xi,−yi), we set αi = λ
m
([[yi = 1]] − yiσ(h∗(x∗

i )).

As a consequence, minimizing (5) is equivalent to minimizing BF (0||q) over q ∈ Q̄,

where

Q = {q ∈ [0,1]2m | qi = σ(yi〈β,xi〉), β ∈ R
d}.

This equivalence allows us to use Algorithm 2 for alternately optimizing each classifier

within the general framework of Algorithm 1.

2All vectors ∀i ∈ {1, . . . , n}, αiyixi should be normalized in order to respect the constraint M ∈ [−1,1]n×d .
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Table 1 Distribution of the number of documents and size of the vocabulary of the Reuters RCV2 data

used in our experiments, across languages and categories

Class proportions (%) # docs Voc. size

C15 CCAT E21 ECAT GCAT M11

French 18.7 18.7 8.3 18.7 18.7 16.6 26,648 24,893

German 16.7 16.7 16.7 16.7 16.7 16.6 29,953 34,279

Italian 12.4 20.8 18.5 20.8 11.8 15.6 24,039 15,506

Spanish 5.9 17.0 6.7 17.5 12.2 40.5 12,342 11,547

4 Experiments

We conducted a number of experiments aimed at illustrating the effectiveness of our ap-

proach. These results will show how additional translated corpora can help to learn an effi-

cient classifier under our multiview framework.

We first describe the data on which we ran the experiments, as well as the evaluation

framework.

4.1 Data set

We conducted our experiments on a subset of the Reuters RCV2 collection (Reuters

2000). We used newswire articles written in 4 languages, French, German, Italian and

Spanish and focused on 6 relatively populous classes: C15, CCAT, E21, ECAT, GCAT,

M11 which are represented in all considered languages.

For each language and each class, we sampled up to 5000 documents from RCV2. Doc-

uments belonging to more than one of our 6 classes were assigned the label of their smallest

class. This resulted in 12-30K documents per language (see Table 1), with between 728 and

5000 documents per category. We reserved a test split containing 75% of the documents

(respecting class and language proportions) for testing. Each document from the corpus was

translated to English using a state-of-the-art Statistical Machine Translation system devel-

oped at NRC (Ueffing et al. 2007), in order to produce 4 bilingual, parallel corpora on which

we ran our experiments. Each parallel corpus contains documents with two views: the orig-

inal document and its translation.

For each document, we indexed the text appearing in the title (headline tag), and the

body (body tags) of each article. As preprocessing, we lowercased, mapped digits to a single

digit token, and removed tokens with no alphanumeric characters. We also filtered out

function words using a stop-list, as well as tokens occurring in less than 5 documents.

Documents were then represented as a bag of words, using a TFIDF weighting scheme

based on BM25 (Robertson et al. 1994). The final vocabulary size for each language is given

in the last column of Table 1 for the four source languages.

4.2 Evaluation criteria

In order to evaluate the classification performance of the various methods, we used the F1

measure (Rijsbergen 1979). This measure combines Recall (�) and Precision (�) in
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the following way:

�(h) =

∑

i;yi=+1[[h(xi) > 0]]
∑

i[[yi = +1]]
, �(h) =

∑

i;yi=+1[[h(xi) > 0]]
∑

i[[h(xi) > 0]]
,

F1(h) =
2 × �(h) × �(h)

�(h) + �(h)
.

Each reported performance value is the average over 10 random training/test splits.

4.3 Experimental results

We first evaluated the impact of the co-regularization training on the monolingual classifica-

tion performance. As a baseline, we trained logistic regression classifiers on the monolingual

data only (source language documents on one hand, English translation on the other hand),

i.e. each view independently. This actually corresponds to the initialization stage in Algo-

rithm 1, and is indicated as logistic in the following. We also trained the linear classifiers

using the two co-classification algorithms described in the previous section, i.e. Algorithm 1

using either the gradient-based or the boosting-based approach for alternately learning each

classifier. We refer to these two approaches as cc-Logistic (for co-classification logis-

tic) and cc-Boost (for co-classification boosting), respectively. For each language, we

also compared the result to a Support Vector Machine (SVM) trained on each view indepen-

dently. In our experiments, we used the SVMlight package (Joachims 1999). We used a linear

kernel, and C was fixed to the default value of C−1 = 1
m

∑m

i=1 ‖xi‖
2.

In a second stage, we compared our co-classification results to logistic and SVM models

trained on the concatenated feature space obtained by joining the original and translated

documents. This allows us to compare our results to an approach that uses information

from both views. Note however that we are ultimately interested in learning classifiers that

work on monolingual data, i.e. we do not want to require that an incoming document is

first translated before it can be classified. The classifiers trained on the concatenated feature

space are therefore useful for comparison, but they do not correspond to a viable alternative

in our preferred use case.

All results presented below are averaged over 10 training/test splits of the initial collec-

tion.

Table 2 shows how the co-classification approach improves over the monolingual alter-

natives. It shows that cc-Logistic and cc-Boost always improve over the baseline

logistic, and the difference is almost always statistically significant. In Table 2, a ↓

symbol indicates that a result is significantly worse than the best, according to a Wilcoxon

rank sum test used at a p-value threshold of 0.01 (Lehmann 1975). The co-classification

also usually improves over the single-view SVM. The SVM gets the best classification per-

formance for 4 combinations of language and class, but the difference is never significant.

On the other hand, both cc-Logistic and cc-Boost get several top classification re-

sults (21 and 23, respectively), and the improvement over the SVM is usually significant.

These results show that the additional translated view is able to provide additional informa-

tion, and possibly some disambiguation, which our co-classification is able to leverage. This

therefore supports the conclusion that the co-classification approach we propose is able to

simultaneously exploit the relevant information contained in both collections.

Another observation that can be made from these results is that both co-classification

algorithms behave similarly on all classes and languages. The difference in F-score is usually



Mach Learn (2010) 79: 105–121 115

Table 2 F-measures of different learning algorithms on different classes and for all languages. The best

result is in bold, and a ↓ indicates a result that is statistically significantly worse than the best, according to a

Wilcoxon rank sum test with p < .01

C15 CCAT E21 ECAT GCAT M11

French

logistic 0.837 0.685↓ 0.672↓ 0.703↓ 0.815↓ 0.947

SVMlight 0.828↓ 0.687↓ 0.664↓ 0.702↓ 0.817↓ 0.940↓

cc-Logistic 0.841 0.712 0.688 0.715 0.824 0.952

cc-Boost 0.843 0.709 0.691 0.712 0.828 0.948

Englishf

logistic 0.799↓ 0.667↓ 0.642↓ 0.666↓ 0.770↓ 0.933↓

SVMlight 0.825 0.665↓ 0.651↓ 0.642↓ 0.812 0.941↓

cc-Logistic 0.821 0.694 0.668 0.691 0.817 0.955

cc-Boost 0.824 0.691 0.671 0.694 0.820 0.951

German

logistic 0.788↓ 0.641↓ 0.752↓ 0.653↓ 0.758↓ 0.899

SVMlight 0.775↓ 0.645↓ 0.748↓ 0.655↓ 0.742↓ 0.903

cc-Logistic 0.808 0.687 0.776 0.682 0.778 0.912

cc-Boost 0.812 0.684 0.772 0.679 0.775 0.908

Englishg

logistic 0.736↓ 0.616↓ 0.725↓ 0.612↓ 0.735↓ 0.876↓

SVMlight 0.751↓ 0.623↓ 0.714↓ 0.623↓ 0.757↓ 0.881↓

cc-Logistic 0.774 0.645 0.768 0.664 0.769 0.897

cc-Boost 0.777 0.640 0.772 0.659 0.771 0.894

Italian

logistic 0.721↓ 0.722↓ 0.789↓ 0.787↓ 0.616↓ 0.929↓

SVMlight 0.719↓ 0.724↓ 0.793↓ 0.782↓ 0.620↓ 0.943

cc-Logistic 0.740 0.756 0.809 0.809 0.633 0.945

cc-Boost 0.736 0.759 0.813 0.810 0.629 0.948

Englishi

logistic 0.658↓ 0.656↓ 0.751↓ 0.735↓ 0.575↓ 0.899↓

SVMlight 0.661↓ 0.654↓ 0.738↓ 0.773 0.583↓ 0.920

cc-Logistic 0.689 0.694 0.791 0.768 0.610 0.909

cc-Boost 0.691 0.692 0.787 0.766 0.607 0.913

Spanish

logistic 0.698↓ 0.809↓ 0.603↓ 0.732↓ 0.821↓ 0.899

SVMlight 0.702↓ 0.804↓ 0.608↓ 0.729↓ 0.829↓ 0.907

cc-Logistic 0.712 0.825 0.744 0.769 0.847 0.905

cc-Boost 0.716 0.821 0.741 0.771 0.843 0.908

Englishs

logistic 0.676↓ 0.762↓ 0.563↓ 0.699↓ 0.829↓ 0.878↓

SVMlight 0.681↓ 0.782↓ 0.558↓ 0.725↓ 0.831↓ 0.908

cc-Logistic 0.697 0.804 0.602 0.759 0.844 0.899

cc-Boost 0.701 0.808 0.598 0.762 0.841 0.902

between 0.002 and 0.004. This is not surprising as both the gradient approach and boosting

are solving the same optimization problem. Their average performances are almost identical.

We also observe that the performance on the source language data (French, German, Ital-

ian and Spanish) is overall slightly higher than on the translated (English) documents, as

illustrated in Fig. 1. We attribute this to the imperfect translation provided by the Statisti-

cal Machine Translation model. Note however that the difference is between 2.5 and 3.5
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Fig. 1 Performance on the

translation vs. source language,

for all combinations of class and

language, and all models. As

expected, the performance is

generally slightly lower on the

translation

F-score points on average, which suggest that the translation, although imperfect,3 is clearly

sufficient for document categorization purposes.

Along the same lines, let us note that the gain in performance provided by the co-

classification approach is larger on the English data. This again makes sense: given that

the translated data is slightly degraded, it is not surprising that we gain more by considering

source data as an additional view to the translations than when we add translated data as

additional view to the source documents.

Finally, note that on class M11, where the performance of the baseline classifier is already

high for all languages, using both views in the learning stage did not alter the performance

very much. This again makes sense: as classifier performance gets higher, it gets more diffi-

cult to improve upon it.

Although the cc-Logistic and cc-Boost outperform both logistic and SVM in

these results, the comparison is not entirely fair as the co-classification approach has access

to both views, and therefore more information than the monolingual baselines. In order to

address that issue, we also trained logistic and SVM classifiers on the concatenated feature

space containing both views. For each class and source language, we index both the source

document and the translation, and train the classifier on that. Note that this corresponds to a

different use case than the co-classification approach, where the goal is to obtain a classifier

that operates on a monolingual document, i.e. the bilingual data is used only during training.

The results are reported in Table 3. We see that the performance on the concatenated

views increases slightly over the monolingual baseline, but stays below the co-classification

approach, except for three contexts (class C15 for logistic on Spanish and class M11

for SVMlight on German and Spanish), where the increase is not statistically significant. In

fact, the performance is typically between what we observed on source language documents

and what we obtain on translations. We analyse that as a sign that simply concatenating the

features adds a lot of redundant and noisy information. Although it may improve over the

monolingual classifier obtained from the lower quality view (English translations), it usually

degrades the performance obtained on the higher quality view using co-classification.

Finally, we analyse the influence of the discount factor λ on the performance. Figure 2

shows how the performance varies depending on the value of λ for 4 classes (for clarity

3On the actual translation task, the difference between the Machine Translation output and human-quality

text, as measured for example by the Translation Edit Rate, is typically around 30–40% on our reference

data. It’s impossible to assess on the Reuters data for lack of reference data.
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Table 3 F-measures for the logistic regression and SVM for all classes, obtained on the concatenated feature

space using both views

C15 CCAT E21 ECAT GCAT M11

French+Englishf
logistic 0.817 0.673 0.672 0.672 0.790 0.938

SVMlight 0.829 0.691 0.668 0.705 0.820 0.942

German+Englishg
logistic 0.792 0.653 0.745 0.646 0.750 0.901

SVMlight 0.780 0.646 0.749 0.658 0.761 0.919

Italian+Englishi
logistic 0.731 0.698 0.786 0.756 0.621 0.926

SVMlight 0.672 0.665 0.751 0.790 0.588 0.925

Spanish+Englishs
logistic 0.720 0.811 0.620 0.721 0.846 0.880

SVMlight 0.705 0.805 0.609 0.737 0.840 0.910

we omit CCAT and M11 from the graphs). The graphs suggest that the performance is only

mildly influenced by the precise setting of the discount factor. However, it also shows that

the optimal value of λ varies depending on the condition. On French, for example (top left

graph in Fig. 2), lower values are best for classes C15 and ECAT, while higher values are

preferable for classes E21 and GCAT.

5 Discussion

We discuss some of the interesting features of our co-classification approach, how to relax

the parallel corpus assumption, and present a number of natural extensions of this work.

5.1 The virtues of co-classification

Our co-classification framework relies on a co-regularization, multiview learning approach

which may be applied to various document classifiers. Our experimental results suggest that

this is an effective way to train monolingual classifiers while leveraging the availability of

multilingual data with the same category structure. Our results also suggest that Machine

Translation may be an effective way to provide useful additional views on which the co-

classification framework may be applied.

One key feature as opposed to multiple kernel learning is that after having learned from

multiple views, we obtain one classifier per view, and we can therefore classify examples

for which only one view is available, without having to generate additional views (using MT

for example).

Another interesting feature is that we can use any monolingual classifier as long as it

can be trained with a regularized cost such as (1). This allows co-classification to be com-

putational efficient when the base classifiers are trained by gradient descent or boosting, as

presented here.

5.2 Relaxing the parallel corpus assumption

In our work and experiments, we have focused on the use of a parallel corpus of docu-

ments and their translations. However, our framework extends easily to the situation where

a possibly much larger comparable corpus is available.
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Fig. 2 F-measures of cc-Logistic with respect to the discount factor λ for French, German, Italian and

Spanish (Left) and their translations to English (Right) on C15 (�), ECAT (∗), E21 (×) and GCAT (�)
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A comparable corpus contains documents in both language that, roughly speaking, “talk

about the same thing”. It is usually argued that comparable corpora are easier to obtain, and

in larger quantities, than parallel corpora. Not only do documents need not be translation

of each other, the number of source and translated documents may be quite different. The-

oretical as well as empirical results (Amini et al. 2009) suggest that using such comparable

corpora as additional resource potentially improves the classification accuracy.

In the context of our co-classification framework, let us assume that we have an ad-

ditional comparable corpus containing m1 and m2 documents, respectively. Let us con-

sider each monolingual side of the corpus,4 T1 = {(x
(1)
i , y

(1)
i ), i = m + 1, . . . ,m + m1} and

T2 = {(x
(2)
i , y

(2)
i ), i = m + 1, . . . ,m + m2}. We can take this into account during training by

adding these documents to the monolingual cost. For binary classification:

C(h1, S1, T1) =

m
∑

i=1

[[yih1(x
(1)
i ) ≤ 0]]

︸ ︷︷ ︸

parallel corpus cost

+

m+m1∑

i=m+1

[[y
(1)
i h1(x

(1)
i ) ≤ 0]]

︸ ︷︷ ︸

comparable corpus cost

(10)

and similarly for the monolingual cost on the English side.

The divergence between the classifiers is unchanged from Sect. 3 in that case, and is still

evaluated on the parallel corpus alone. The modification to Algorithm 1 is straightforward.

In addition, note that we actually do not use the labels in the divergence term. The parallel

corpus may therefore be entirely unlabeled. The monolingual costs may then use the labeled,

comparable data, while the divergence use unlabeled parallel data from the same domain.

5.3 Extensions of co-classification

Let us describe two straightforward extensions of our co-classification framework: the mul-

ticlass, multilabel setting, and the use of non-symmetric losses.

Although we have described our algorithms on binary classification, it is naturally pos-

sible to extend the framework to multiclass (both single- and multilabel). As the multiclass,

multilabel situation may be seen as multiple binary classifications, described above, we will

describe how the model can handle multiclass, single label classification. In that situation,

Y = {1, . . . ,K}. The monolingual cost C(h, S) is then changed to reflect that. Assuming that

the classifier h outputs a vector of hk, k = 1 . . .K , a multiclass extension of the misclassifi-

cation cost used in (5) is:

C(h, S) =

m
∑

i=1

[[

argmax
k

hk(xi) �= yi

]]

. (11)

The general shape of the global objective (see (4)) does not change, but the divergence

between the classifier outputs is updated to handle multiple classes:

d(h(1)(xi),h(2)(xi)) =
∑

k

(

σk(h
(1)(xi)) − σk(h

(2)(xi))
)

log

(
σk(h

(1)(xi))

σk(h(2)(xi))

)

(12)

4In our notation, documents x
(1)
i

and x
(2)
i

are translations of each other, and have an identical label y
(1)
i

=

y
(2)
i

= yi , for i = 1 . . .m, whereas for i > m, the documents are different and may have different labels y
(1)
i

and y
(2)
i

.
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where σ(h(x)) is a “softmax” which transforms the numeric scores h(x) into output proba-

bilities, e.g. σk(h(x)) = exp(hk(x))/
∑

j exp(hj (x)).

The previous extension leverages the general form of the global cost (4), which allows

both classifiers to be trained on different sets of documents. Notice that this can be pushed

further by actually using different costs for each view, or even train different classifiers on

each view, as long as both can produce probabilities as output, so that we can compute the

divergence. On languages that are linguistically very different, this may actually be relevant.

E.g. if one view is a language with a natural tokenization, a bag-of-word approach usually

performs well. If the other language has no natural segmentation (e.g. Chinese), a classifier

and cost working at the level of character sequences may be more appropriate.

6 Conclusion

In this paper we presented a strategy for learning to classify documents from multilingual

corpora. Our approach takes into account the disagreement of classifiers on the parallel part

of a corpus, where for each document there exists a translated version in the other language.

We derived training algorithms for logistic regression and boosting, and show that the re-

sulting categorizers outperform models trained independently on each language, as well as

classifiers trained on the concatenation of both languages. Experiments were performed on

four corpora extracted from Reuters RCV2, where each document was translated using a

Statistical Machine Translation model. We are working towards making available our pre-

processed bilingual corpora as a usable resource for the community. Our results suggest that

multi-view learning is a promising framework for learning text categorizers from multilin-

gual corpora. They also show that Machine Translation can help improve text categorization

performance. There exist a numerous interesting directions to be explored under the frame-

work of learning from multiple languages, making this paradigm ideal for further research.
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