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Mechanism-Based Modeling for Low Cycle Fatigue
of Cast Austenitic Steel

XIJIA WU, GUANGCHUN QUAN, and CLAYTON SLOSS

A mechanism-based approach—the integrated creep-fatigue theory (ICFT)—is used to model
low cycle fatigue behavior of 1.4848 cast austenitic steel over the temperature range from room
temperature (RT) to 1173 K (900 �C) and the strain rate range from of 2 9 10�4 to
2 9 10�2 s�1. The ICFT formulates the material’s constitutive equation based on the physical
strain decomposition into mechanism strains, and the associated damage accumulation
consisting of crack nucleation and propagation in coalescence with internally distributed
damage. At room temperature, the material behavior is controlled by plasticity, resulting in a
rate-independent and cyclically stable behavior. The material exhibits significant cyclic
hardening at intermediate temperatures, 673 K to 873 K (400 �C to 600 �C), with negative
strain rate sensitivity, due to dynamic strain aging. At high temperatures>1073 K (800 �C),
time-dependent deformation is manifested with positive rate sensitivity as commonly seen in
metallic materials at high temperature. The ICFT quantitatively delineates the contribution of
each mechanism in damage accumulation, and predicts the fatigue life as a result of synergistic
interaction of the above identified mechanisms. The model descriptions agree well with the
experimental and fractographic observations.

DOI: 10.1007/s11661-017-4160-4
� Published with permission of the Crown in Right of Canada 2017

I. INTRODUCTION

AUSTENITIC stainless steels are widely used to cast
hot-end components of exhaust systems of internal
combustion engines (ICE), especially when the gas
temperature reaches above 900 �C. Under such severe
operating conditions, low cycle fatigue (LCF) and
thermomechanical fatigue (TMF) are inevitably the
major failure modes concerned in the component design.
Life prediction for LCF and TMF of austenitic stainless
steels is particularly challenging, because the damage
process involves multiple deformation mechanisms such
as plasticity, dynamic strain aging (DSA) from solute
drag effect,[1] and creep, which result in a cyclically
non-stable behavior in combination with oxidation.[2–4]

Many conventional fatigue analysis methods have been
proposed such as strain-based Coffin–Manson relation[5]

and energy-based Morrow equation,[6] but they do not
delineate these mechanisms explicitly.

In order to delineate the contributions of material-in-
trinsic (deformation mechanisms) and extrinsic (envi-
ronmental effects) factors in LCF and TMF, it is
advantageous to use mechanism-based constitutive laws
to evaluate the mechanism strain responsible for the
respective damage, instead of the lump-sum viscoplastic
strain obtained with the unified constitutive theory.[7]

The reason is the following, as commonly understood by
physical metallurgy: fatigue damage is caused by alter-
nating plasticity via irreversible slip via dislocation
glide[8–11]; while creep by dislocation climb via vacancy
flow releases dislocations piled-up at obstacles in
glide,[12,13] which tends to ease the fatigue damage; and
on the other hand, vacancy flow and grain boundary
sliding promotes cavitation and void growth along grain
boundaries,[14,15] which lead to the formation of inter-
nally distributed damage. These different mechanisms
result in either transgranular or intergranular failure.
Apparently, the unified viscoplastic strain is not suit-
able for correlation with failure modes since multiple
failure modes may occur with a single-value inelastic
strain, depending on whether it is accumulated by
plasticity or creep. The ICFT has been successfully
applied to ductile cast iron for the above purposes.[16,17]

In this study, the mechanism-based approach—ICF-
T—is used to analyze the cyclic behavior of 1.4848 cast
austenitic steel. LCF experiments were conducted on
this alloy at different strain rates from 2 9 10�4 to
2 9 10�2 s�1 in the temperature range from room
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temperature (RT) to 1173 K (900 �C). The deformation
and damage mechanisms involved are discussed in
relation to the observed behavior. Life of LCF is
evaluated with consideration of mechanical fatigue,
environmental effects, and interactions with internally
distributed damage as induced by DSA at intermediate
temperatures and creep at high temperatures.

II. EXPERIMENTAL

The austenitic cast stainless steel used in this study
was 1.4848 with the nominal chemical composition as
given in Table I. Strain-controlled LCF tests were
conducted on a MTS uniaxial servo hydraulic test
frame, model MTS 810 equipped with an ATS series
3210 three-zone radiation furnace. During the test, the
temperature was controlled using 3 K-type thermocou-
ples with fixed mounting positions within the furnace
hot zone. Closed loop control of the specimen loading
was achieved by measuring the elongation of the
specimen with an MTS model 632.54 extensometer
and using an MTS model GT493 digital controller
regulating the force applied to the specimen. The load
applied to the specimen was monitored with an MTS
Model 661 load cell.

Fatigue testing was conducted, following the ASTM
Standard E606-04, at strain rates of 0.02, 0.002, and
0.0002 s�1 in the temperature range of RT to 1173 K
(20 �C to 900 �C). Post-mortem fractographic examina-
tion of the fracture surfaces was conducted using a
Philips XL30S scanning electron microscope (SEM).

III. MECHANISM-BASED CONSTITUTIVE
EQUATIONS

It has been recognized that metallic materials can
change shape by plastic deformation, creep, and diffu-
sion.[13] Figure 1 shows a schematic of deformation
mechanism map. Generally, rate-independent plasticity
occurs by dislocation glide and cross slip at low
temperatures (i.e., T< 0.3Tm, where Tm is the melting
temperature in Kelvin). In this regime, dislocations can
pile up at obstacles such as precipitates and inclusions,
resulting in strain hardening. Under cyclic loading,
alternating dislocation glide results in crystallographic
slip and slip reversal, leading to fatigue. As temperature
increases, some pile-up dislocations can climb along the
obstacles and continue to glide, when assisted by
vacancy diffusion, such that time-dependent deforma-
tion, i.e., creep, is manifested. Creep deformation at
elevated temperatures occurs via dislocation climb and
glide: (i) along grain boundaries, resulting in grain
boundary sliding (GBS); and (ii) within the grain
interior, resulting in intragranular deformation (ID).

Pure diffusional flow may occur in metals at low stresses
and high temperatures, but it is often neglected in
engineering alloys.
In previous work, a framework of integrated

creep–fatigue theory has been outlined and applied to
Co-base/Ni-base superalloys and ductile cast iron,[16–19]

where the total deformation comprises elastic–plastic
deformation and creep,

e ¼ r

E
þ ep

� �

þ ev; ½1�

where r is the normal stress; E is the Young’s modulus;
ep is plastic strain; and ev is creep strain. Here, the
deformation quantities within the bracket are instanta-
neous and rate-independent. The creep strain ev is
time-dependent, and it can be further decomposed into
mechanism-based strains such as ID, GBS, and
diffusion.
Rate-independent plasticity is often described by

ep ¼ r� r0

K

� �n

; ½2�

where r0 represents the initial yield stress, while K is the
plastic drag stress and n is the stress exponent. Here, it
should be noted that the classical theory of plasticity has
been robustly implemented in commercial finite element
method (FEM) software packages such as Abaqus and
MSC.Marc, such that either Eq. [2] or tabulated tensile
data can be input to perform incremental plasticity
analysis with options of kinematic and/or isotropic
hardening. In this study, Eq. [2] is merely used to
analyze the uniaxial tensile behavior of rate-independent
plasticity. Once the mechanism-based parameters are
determined, the constitutive equation(s) can be imple-
mented into the appropriate subroutine(s) of

Table I. Composition of 1.4848 Austenitic Steel (Wt. Percent)

C Si Mn Ni Cr Fe

0.35 1.5 0.6 20 25 bal.

Fig. 1—Schematic of deformation mechanism map.
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commercial FEM for 3D analysis. The same principle is
true for creep discussed in the following.

As mentioned earlier, creep occurs by a plethora of
mechanisms including intragranular dislocation glide
plus climb as well as GBS. During strain-controlled
tensile loading, it is always the fastest mechanism that
causes material yielding. According to the deformation
mechanism maps,[13] as shown in Figure 1, dislocation
glide tends to dominate in the high stress region, resulting
in the flow stress behavior after yielding. The stress-de-
pendency of dislocation glide can be described by many
functions such as power-law, hyperbolic sine, and hyper-
bolic sine to the power of n. Actually, it has been shown
that within the strain rate range of 10�8 to 100 s�1, all the
above functions are equivalent for the same rate phe-
nomenon.[7]Therefore, without losing generality, here we
use the rate equation for single-barrier-activation to
represent the thermally activated dislocation glide plus
climb,[20] which has a hyperbolic sine form, as

_ev ¼ 2A sinh
Vðr� rbÞ

kT

� �

; ½3a�

where

A ¼ A0 exp � Q

RT

� �

; ½3b�

where A0 is the pre-exponential rate constant, Q is the
activation energy, V is the activation volume, rb is the
back stress, k is the Boltzmann constant, R is the
universal gas constant, and T is the absolute
temperature.

In the following, we will derive the back stress from
the dislocation pile-up and release mechanism as
schematically shown in Figure 2. In keeping consistency
with the driving force for plastic deformation, we use the
shear stress and strain terms, s and c. Under uniaxial
loading conditions, the uniaxial normal stress and strain
are related to the shear stress and strain by the Taylor’s

factor: r ¼
ffiffiffi

3
p

s and e ¼ c=
ffiffiffi

3
p

. As plastic deformation
proceeds, the gliding dislocations may be obstructed by
obstacles as shown in Figure 2. The stress field of these
dislocations acts as a back stress on mobile dislocations.
Suppose that the distance between the dislocation source
(e.g., a Frank–Reed source) and the obstacle is k, and
there are n dislocations in the pile-up at time t. The back
stress that pile-up dislocations together exert on a
moving dislocation located at a distance x away is
equal to n times the stress by unit dislocation[21]

siðxÞ ¼
nGb

2pð1� mÞx ; ½4�

where m is the Poisson’s ratio, G is the shear modulus,
and b is the Burgers vector.

The average back stress opposing dislocation glide, sb,
can be defined as the mechanical work against the
dislocation glide over the distance k, as

sb ¼ 1

k

Z

k

nb

siðxÞdx: ½5�

Substituting Eq. [4] into Eq. [5], the integration leads
to

sb ¼
nGb

2pð1� mÞk ln
k

nb
: ½6�

The number of dislocations arriving per unit time is
given by qvs, where q is the dislocation density, v is the
dislocation velocity, and s is the slip-band width. At the
same time, the number of dislocations leaving the
pile-up is equal to nj, where j is the rate of climb.
Hence, for a single slip system, the change in the number
of pile-up dislocations in a unit time is given by

dn

dt
¼ qvs� jn: ½7�

By the Orowan equation, _c = qbt (s � b), Eq. [7]
becomes

dn

dt
¼ _c� jn: ½8�

Differentiating Eq. [6] with respect to time, and
substituting Eq. [8] into the differential equation,

_sb ¼ Gb

2pð1� mÞk ln
k

nb

� �

� 1

� �

_c� njð Þ: ½9�

Consider that usually ln(k/nb) � 1, Eq. [9] can be
simplified as

_sb ¼ H _c� jsb; ½10�

where H = [Gb/2p(1 � m)k]ln(k/nb) is the work-hard-
ening coefficient, which can be practically considered as
a microstructure constant, since the logarithmic varia-
tion with n is usually small when n is large. Equa-
tion [10] formulates the strain hardening-recovery
mechanism with the first term H _c representing work
hardening arising from dislocation glide, and the second
term sbÆj representing recovery as controlled by dislo-
cation climb.
According to the deformation kinetics,[22] it is always

the highest rate mechanism that dominates when mul-
tiple mechanisms operate independently. Under

Fig. 2—A schematic of dislocation pile-up against an obstacle.
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strain-controlled loading conditions, deformation is
forced to keep up with the loading rate, and hence the
highest rate mechanism prevails to yield the plastic flow.
Particularly, at high strain rates representative of engine
start-up and shutdown, deformation is controlled by
rate-independent plasticity in combination with ther-
mally activated dislocation glide; other low-stress oper-
ating mechanisms can be quickly passed at such high
loading rate.

Under uniaxial constant-strain-rate deformation con-
ditions, according to Eq. [1], the material behavior
obeys the deformation constraint

_e ¼ _r

E
þ _ep þ _ev ¼ constant: ½11�

Under more general loading conditions, especially in
3D components, the stress–strain response would be
played out by the mechanism-based constitutive equa-
tion subjected to the boundary conditions of the
component. Therefore, the following analysis is a case
study of the ICFT for uniaxial deformation.

Under isothermal LCF conditions, the rate of plastic
strain ep accumulation, according to Eq. [2], can be
expressed as

_ep ¼ n

K

r� r0

K

� �n�1

_r: ½12�

Equation [12] is in accordance with the incremental
flow theory of plasticity.[23] Here, the expression is
provided for monotonic loading though, when imple-
mented in the plasticity subroutine of commercial FEM
software, as mentioned before, incremental plastic
deformation will be automatically evaluated by FEM
that embodies the classical theory of plasticity. This has
been demonstrated in an earlier study for ductile cast
iron.[16,17]

Substituting Eq. [12] into Eq. [11], we have

_e ¼ _r

E
þ _ep þ _ev ¼ 1þ nE

K

r� r0

K

� �n�1
� �

_r

E
þ _ev: ½13�

We define the plasticity-accommodated tangent mod-
ulus as

1

Et

¼ 1

E
þ n

K

r� r0

K

� �n�1
� �

: ½14�

Then, Eq. [13] can be rewritten as

_e ¼ _r

Et

þ _ev: ½15�

Under fast strain rate loading, we assume H _c � sbÆj,
in Eq. [10]. Then, converting to the normal strain under
uniaxial loading, _rb � H_ev(in the present study, at high
temperatures when time-dependent deformation arises,
linear work hardening is indeed observed, which will be
discussed later, and henceforth the work-hardening

coefficient is determined in the normal sense), Eq. [3]
can be rewritten as

_ev ¼ 2A sinhW; ½16a�
where

_W ¼ V

kT
ð _r�H_evÞ: ½16b�

Here, W is defined as the ratio of mechanical energy to
thermal energy of the activation system.
Combining Eqs. [15] and [16], we have the governing

differential equation for W, as

_W ¼ EtV

kT
_e� 2A 1þ H

Et

� �

sinhW

� �

: ½17�

This differential equation can be solved in infinitesi-
mal steps as follows. We assume that the evolution of
the energy, W, undergoes a series of infinitesimally small
increments, for each i-th step, the energy state evolves
from Wi�1 to Wi over the time interval Dti = ti � ti�1.
Within this internal, the stress and transient tangent Et

are constant. Then, following the solution procedures of
Reference 20, we have

ln
e�W � a

ve�W þ b

� �	

	

	

	

Wi

Wi�1

¼ �VEt _e
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v2
p

kTi

Dti i ¼ 1; 2; . . .ð Þ:

½18�

Summing up all these infinitesimal steps, we have

X

N

i¼1

ln
e�W � a

ve�W þ b

� �	

	

	

	

Wi

Wi�1

¼ �
X

N

i¼1

VEt _e
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v2
p

kTi

Dti; ½19a�

where

v ¼ 2A

_e
1þH

E

� �

; a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v2
p

� 1

v
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v2
p

þ 1:

½19b�

Let N fi ¥, the left-hand side of Eq. [19a] will be
equal to the logarithmic difference between the final
state and the initial state, since the intermediate steps are
all canceled out, and the right-hand side is integration
over the loading period. After mathematical rearrange-
ment, we have

e�W � a

ve�W þ b

� �

¼ 1� a

vþ b

� �

exp �
Z

t

t0

VEt _c
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v2
p

kT
dt

8

<

:

9

=

;

;

½20�

where t0 is the time to reach the elastic limit, or in other
words, when plastic flow commences.
The elastic limit r0 is defined by

W0 ¼
ðr� r0Þ

kT
¼ 0: ½21�
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From Eq. [20], we can obtain the stress–strain
response as follows:

r�Hev � r0 ¼ � kT

V
ln

aþ xb

1� xv

� �

; ½22a�

where x is the response function defined by

xðeÞ ¼ 1� a

vþ b

� �

exp �
V
R e

e0
Et

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v2
p

de

kT

( )

; ½22b�

where e0 = r0/E.
The above model has seven (7) material parameters

(K, n, r0, A0, Q, V, and H) in total. They are defined
with respect to the physical mechanisms involved, and
their roles in governing the stress–strain relationship are
explicitly expressed as in the analytical form, Eq. [22].
For rate-independent plasticity, r0 represents the min-
imum lattice resistance, K represents the drag stress
responsible for isotropic hardening, and n is the power
exponent. These can all be temperature-dependent, as
usually the case. The activation parameters, A0, Q, V,
are assumed to be constants for an ideal constant
structure. The work-hardening coefficient H is also
temperature-dependent, as it is proportional to the shear
modulus G. For 3D component analysis, the validated
uniaxial model can be implemented into FEM in two
parts: (1) (rate-independent) plasticity and (2) creep,
through either existing or user subroutines, but run with
both at the same time, as seen in, e.g., Reference 24.

The present model will reduce to rate-independent
plasticity when the time-dependent mechanisms do not
operate (e.g., when _ev � 0 at low temperature). When
thermally activated processes intervene, the stress–strain
response will show rate-dependence. In describing the
cyclic behavior of a material, if the material is cyclically
stable, Eq. [22] can be used to describe the cyclic
stress–strain curve, as in the case for DCI.[16,17] If the
material is not cyclically stable, the cyclic stress–strain
relation needs to be tracked with an additional internal
state variable for either cyclic hardening or softening.
However, for practical reasons, it is more advantageous
to choose a cyclically stable quantity for LCF life
correlation. In this regard, the plastic energy may be an
appropriate parameter.[6,25] In the following section, the
cyclic deformation behaviors of 1.4848 austenitic cast
steel are discussed along with the model descriptions
using the mechanism-based deformation formulation, in
the context of Eqs. [1] through [22].

IV. RESULTS AND DISCUSSION

A. Cyclic Behavior

1. Room-temperature behavior
The room temperature (RT) hysteresis behaviors of

cast austenitic stainless steel 1.4848 at strain rate of
_e = 0.02 s�1 are shown in Figure 3, which appear to be
cyclically stable for the majority of its life cycles at all
strain amplitudes. When the hysteresis loops are dis-
placed with the zero points setting at the maximum

compression states as shown in Figure 4 (the hysteresis
loop of 1 pct strain range at _e = 0.002 s�1 is also shown
for comparison), one finds that the material exhibits a
Masing behavior at room temperature. For stabilized
Masing behavior, both the hysteresis loops and the
cyclic stress–strain relationship can be described by
Eq. [2], which has been a standard practice in fatigue
analysis. The Masing behavior is apparently attributed
to rate-independent plasticity, when all the other
rate-dependent mechanisms are absent (negligible) at
room temperature.

2. Intermediate temperature behavior [673 K to 873 K
(400 �C to 600 �C)]
As observed at 673 K (400 �C), the material’s cyclic

behavior exhibited significant cyclic hardening until
fracture, especially at a slow strain rate, _e = 0.002 s�1,
as shown in Figure 5. Dynamic strain aging (DSA) has
been known to contribute to cyclic hardening of
austenitic stainless steels such as type 316L austenitic
stainless steel in the temperature range of 523 K to
823 K (250 �C to 550 �C).[2,3] DSA is a result of
interaction between diffusing solute atoms and mobile
dislocations during plastic deformation. It is manifested
by pinning of slow moving dislocations, restricting the
cross slip of screw dislocations, and hence enhancing slip
inhomogeneity, thus resulting in an increased stress
(hardening) to reach the prescribed strain level. In a
cyclic process, this means continued evolution of the
hysteresis loops with the number of cycles. The behavior
(Figure 5) poses a significant challenge to stress model-
ers in that every hysteresis loop has to be computed until
the final cycle to failure. Here, we shall try a simulation
case for cyclic deformation at 673 K (400 �C) as follows.
Figure 6 shows the experimental hysteresis loops

recorded from the 1st cycle to 4134th cycle (near to
failure), cycling between ±0.34 pct strain at
_e = 0.002 s�1. The material experienced continuous
cyclic hardening due to the DSA effect. To account for
that effect, we modify Chaboche’s internal state variable
R formulation,[7] as

Fig. 3—Hysteresis loops of cast austenitic steel at RT.
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_R ¼ ½bðQ� Rþ cpÞ þ c� _p; ½23�
where b, Q, c are material constants and p is the accu-
mulated plastic strain. Here, a new term cp is intro-
duced to describe the steady increase of isotropic
hardening (in Chaboche’s original formulation, c = 0,
and therefore it describes isotropic hardening
approaching a constant level). The integration of
Eq. [23] lead to

R ¼ Q½1� expð�bpÞ� þ cp: ½24�

And it adds to the drag stress as K = K0+R, with K0

being the drag stress (denominator of the applied stress
in Eq. [2]) in absence of isotropic hardening.

As cyclic plastic strain accumulates under DSA
conditions, dislocation structure would evolve, which
also leads to change in the power-law exponent, n. By
the same token, we formulate n as

n ¼ n0 �Qn½1� expð�bnpÞ� þ cnp; ½25�

where bn, Qn, cn, and n0 are material constants.
With the above two equations to describe the evolu-

tion of plasticity constants K and n under DSA
condition as shown in Figure 7 for the best-fit, and a
constant kinematic hardening for each reversal, the
hysteresis loops can be simulated, as shown in Figure 6
(lines). Equations [24] and [25] may be of phenomeno-
logical interest per cyclic test condition, but it will be
very tedious to be implemented for component analysis,
for which hundreds or even thousands of material finite
elements must be updated cycle by cycle until final
failure at thousands or millions of cycles. Therefore, in
the following analysis, we seek some simplified repre-
sentation of the DSA-affected behavior in terms of cyclic
stress–strain curves.
Solute drag and dislocation-solute dynamic models

have been developed to describe the DSA-induced
serrated flow in terms of dislocation density or disloca-
tion velocity.[21,26] Miller pointed out that DSA con-
tributes to the drag stress for viscoplasticity, based on
the Cottrell mechanism.[27] Inspired by the Cottrell
solute atmosphere model,[26] where the drag force
depends on the ratio of dislocation velocity, v, to the
diffusivity of the solute atom, Di, in a function as F � (v/
Di) ln (Di/v), we propose that the additional DSA drag
stress can be formulated as KDSA / ð_em=DiÞ lnðDi=_e

mÞ,
which is added to the baseline lattice drag stress. Then
the total drag stress is

K ¼ K0 þ k1Tþ k2
_em

Di

ln
Di

_em

� �
 �

; ½26�

where K0, k1, k2 are material constant; m is a power-law
exponent; the function hÆi signifies that hxi = x, if
x> 0, and hxi = 0, if x< 0. Here, the baseline drag
stress is formulated as a linear function of temperature,
for simplicity. The calibrated Eq. [26] for the mid-life
cyclic stress–strain behavior is compared with the

Fig. 4—Stabilized hysteresis loops of austenitic cast steel at room
temperature.

Fig. 5—Hysteresis loops of cast austenitic steel at 673 K (400 �C).

Fig. 6—Experimental and simulated hysteresis loops of cast austeni-
tic steel cycled between ±0.34 pct strain at strain rate of 0.002 s�1,
673 K (400 �C).
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experimental best-fit values, as shown in Figure 8, and it
is given in Table II for 1.4848 cast austenitic stainless
steel under the tested conditions. It can be inferred from
Eq. [26] that either at high temperatures when the
diffusion rate of the solute atoms is much larger than the
strain rate effect (to the m-power), or at low tempera-
tures when the solute atoms are immobile, the DSA
effect would be minimal, since the solute atmosphere
would not physically form under these conditions.
Therefore, there is no delimitation of the model in this
regard. The mid-life hysteresis loops are displaced with
the zero points setting at the maximum compression
states as shown in Figure 9. The first cyclic stress–strain
curve (the curve that connects the peaks of the first-cycle
hysteresis loops at different strain ranges), the mid-life
cyclic stress–strain curve (the conventional cyclic
stress–strain curve), and the last cyclic stress–strain
curve (the curve that connects the peaks of the last
hysteresis loops at different strain ranges, before load
drop due to crack initiation) are also shown to see the
evolution of the cyclic stress–strain behavior. At a high
strain rate of _e = 0.02 s�1, the cyclic stress–strain
response curve approaches to the Masing behavior with
cyclic hardening (Figure 9(a)). However, at lower strain
rates, e.g., _e = 0.002 s�1, the cyclic stress–strain behav-
ior becomes non-Masing due to stronger DSA effect
(Figure 9(b)). In essence, DSA is regarded as part of
plasticity phenomena, but with a rate-dependent change

of material microstructure (solute atmosphere and
planar slip bands).[28] The observed cyclic behavior of
1.4848 cast austenitic stainless steel has negative strain
rate sensitivity due to DSA in the intermediate temper-
ature range. Interestingly, in this cast austenitic steel,
serrated plastic flow was not observed as in wrought
austenitic steels previously studied. This could be due to
the difference in the initial dislocation structures of the
cast and the wrought materials. In the wrought material,
the local high dislocation density may boost the plastic
strain rate exceeding the imposed strain rate, thus
causing the localized stress relaxation.[29] The cyclic
behavior at 873 K (600 �C) also exhibits significant
cyclic hardening with negative strain rate sensitivity, as
shown in Figures 10 and 11. The first, the mid-life and
the last cyclic stress–strain curves are also shown for the
cyclic stress–strain behaviors at 873 K (600 �C), as
shown in Figure 11.

3. High temperature behavior [>1073 K (800 �C)]
The cyclic stress behaviors of the material at different

strain rates at 1073 K (800 �C) are shown in Figure 12.
Even though the initial response appeared to be rate-de-
pendent, after a short number of cycles (~100) the
material became cyclically stabilized. The mid-life hys-
teresis loops of the cast austenitic steel at the strain rate
of _e = 0.02 and 0.0002 s�1 at this temperature are
shown in Figure 13. The strain rate did have an effect on

Fig. 7—Plasticity parameters as evolved with accumulated plastic
strain for the conditions between ±0.34 pct strain at strain rate of
0.002 s�1, 673 K (400 �C).

Fig. 8—Drag stress for plasticity considering the effect of DSA.

Table II. Deformation Mechanisms and Parameters

Temperature 293 K (20 �C) 673 K (400 �C) 873 K (600 �C) 1073 K (800 �C) 1173 K (900 �C)

Plasticity r0 (MPa) 100 100 100 100 70
n 5.54 4.75 4.75 4.75 4.75
K (MPa) 1217 — — 922

DSA K (MPa) K ¼ 922þ ð1217�922Þ
ð1173�293Þ ð1173� TÞ þ 1800 _e0:1

185 exp �30000
RTð Þ ln

185 exp �30000
RTð Þ

_e0:1

� �
 �

Creep H (MPa) — — — 3734 3734
A0 (s

�1) 1.47 9 1034

Q (kJ) 891
V (m3) 5.6 9 10�28
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the shape of the hysteresis loop. However, at this
temperature, the effect of DSA was balanced by the
positive strain rate sensitivity of creep deformation. The
cyclic stress–strain behavior of this austenitic steel at
1073 K (800 �C) is highly non-Masing.

At 1173 K (900 �C), the material appeared to be
cyclically stable right from the beginning, and it
exhibited slightly cyclic-softening, as shown in
Figure 14. The positive rate sensitivity was apparent in

that the slower loading rate caused a significantly lower
flow stress behavior. The mid-life hysteresis loops of the
material at this temperature are shown in Figures 15(a)
and (b), for the two strain rates, 0.002 and 0.0002 s�1,
respectively. The positive strain rate sensitivity should
be attributed to operation of time-dependent creep
mechanism. The cyclic stress–strain behavior of this
austenitic steel at 1173 K (900 �C) appeared to be
closely Masing. The slight variations could be due to
material variability.
For deformation at 1073 K and 1173 K (800 �C and

900 �C), both plasticity Eq. [2] and creep Eq. [3] are
considered in the overall strain formulation Eq. [1], and
the descriptions of the cyclic stress–strain behaviors are
shown in Figures 13 and 15, respectively. Particularly, it
is more evident that at the low strain rate at 1173 K
(900 �C), both the cyclic stress–strain and the hysteresis
behaviors appear to be governed by dislocation-glide
creep as attested by the occurrence of linear work
hardening, as formulated in Eq. [10]. Equation [10] also
contains a dislocation pile-up recovery term, but its
effect is not manifested under the strain-forced test
condition. If recovery were significant, it would lead to a
non-linear flow stress behavior approaching a constant
level (steady-state creep). The effect of recovery can be
assessed by switching to constant stress control after
pre-loading to a certain deformation level, but such tests
were not conducted in the present study. The plasticity

Fig. 9—Mid-life hysteresis behaviors of austenitic cast steel at 673 K
(400 �C), (a) at strain rate of 0.02 s�1, (b) at strain rate of 0.002 s�1.

Fig. 10—Hysteresis loops of cast austenitic steel at 873 K (600 �C).

Fig. 11—Mid-life hysteresis behaviors of austenitic cast steel at
600 �C, (a) at strain rate of 0.02 s�1, (b) at strain rate of 0.002 s�1.
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and creep strain accumulation under various test con-
ditions at 1073 K and 1173 K (800 �C and 900 �C) are
shown in Figure 16. At 1073 K (800 �C), high strain
rate loading still drives plasticity to be dominant, but
under low strain rate the contribution of creep rises up,
which brings down the DSA hardening effect. At

1173 K (900 �C), however, creep deformation becomes
predominant with apparent linear strain hardening due
to dislocation glide.
In conclusion, the cyclic deformation behavior of

1.4848 cast austenitic steel is well described by the
mechanism-based constitutive equation, Eq. [22], which
includes rate-independent plasticity and hyperbolic sine
creep mechanisms. Even though the viscosity or creep
mechanism terms appear in Eq. [22] for low-tempera-
ture deformation, but because of the effect of Arrhenius
relation governing the creep mechanism(s), it takes a
negligible effect, because the material would yield first
by rate-independent plasticity mechanism(s). In this
regard, there is no delimitation of the present model
either, except at very high strain rates when dynamic
effects of deformation take place (as the Johnson–Cooke
model). The model parameter values for the mid-life
cyclic stress–strain curves shown in Figures 4, 9, 11, 13,
15 are given in Table II. It appears that cyclic deforma-
tion by pure plasticity is Masing, but when

Fig. 12—Cyclic peak-valley stresses of austenitic cast steel at 1073 K
(800 �C).

Fig. 13—Mid-life hysteresis behaviors of austenitic cast steel at
1073 K (800 �C).

Fig. 14—Cyclic peak-valley stresses of austenitic cast steel at 1173 K
(900 �C).

Fig. 15—Mid-life hysteresis behaviors of austenitic cast steel at
1173 K (900 �C), (a) at strain rate of 0.002 s�1, (b) at strain rate of
0.0002 s�1.
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Fig. 16—Plasticity and creep strain accumulation under various test conditions: (a) at 0.02 s�1, 1073 K (800 �C); (b) at 0.0002 s�1, 1073 K
(800 �C); (c) at 0.002 s�1, 1173 K (900 �C); and (d) at 0.0002 s�1, 1173 K (900 �C).

Fig. 17—The inelastic strain range vs fatigue life for 1.4848 stainless steel.
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rate-dependent mechanisms intervene the behavior
becomes non-Masing. Unified viscoplastic models have
been developed for 304L and 316L stainless steels,[30]

but they do not provide such detailed mechanism
delineation.

B. LCF Life

By the ICFT,[16–19] the overall fatigue life consisting of
crack nucleation and propagation in coalescence with
internally distributed damage can be expressed as

1

N
¼ D

1

Nf

þ h

ac

� 

; ½27�

where Nf is the pure mechanical fatigue life, h

(¼
ffiffiffiffiffiffiffiffiffiffiffi

2koxs
p

, kox is the oxidation constant, s is the cycle
period) is the oxidation increment per cycle, ac is the
critical crack length at fracture, as given by

ac ¼
1

p

KIC

Yrmax

� �2

½28�

and D is a factor considering all internally distributed
damage/discontinuities, as expressed by

D ¼ 1þ
X

i

li

ki

 !

½29�

where li is the size of the i-th damage component and ki
is their interspacing.

Pure mechanical fatigue is regarded as fatigue by
cyclic plasticity, usually occurring at RT without con-
tributions of creep and environmental effects. LCF life is

often correlated with the plastic strain range, by the
Coffin–Manson relationship, if the material is cyclic
stable. For the present case, however, the cast austenitic
steel exhibits significant cyclic hardening in the interme-
diate temperature range, which leads to continuous
reduction of plastic strain range during the cycling.
Fatigue damage assessment by counting the plastic
strain accumulation cycle by cycle would be very tedious
in practice. On the other hand, as shown in Figures 3, 5,
and 10, the hysteresis energy appears to be fairly
constant during the cyclic process, except at very large
strains (e.g., De = 2 pct). Therefore, the energy-based
Morrow relation seems to be an alternative to charac-
terize fatigue life,[6] as

Wp ¼ W0N
d
f ; ½30�

where Wp is the plastic strain energy of the hysteresis
loop, W0 and d are material constants. Since the RT
hysteresis loop remains fairly stable, the RT-LCF data
are used to calibrate Eq. [30] for pure mechanical
fatigue, as shown in Figure 17.
At intermediate temperatures, 673 K and 873 K

(400 �C and 600 �C), DSA promotes slip inhomogeneity
with dislocation pile-ups, forming concentrated slip
bands or dislocation walls. For example, a planar slip
structure of DSA was observed in 316L stainless steel.[28]

Imagining dislocation pile-ups are embryos of cracks,
the internal damage by DSA can be formulated as
proportional to the excess forest dislocation density.
Therefore, the D-factor for austenitic stainless steel can
be written as

D ¼ 1þ a
DrH

lb

� �2

�q0

" #

þ bev; ½31�

where DrH is the amplitude of cyclic hardening (max-
imum attainable peak stress minus the peak stress of the
first cycle), q0 is the dislocation density level below
which there is no instantaneous crack nucleation, and a
the proportional constant for dislocation-nucleated
cracks, and b is proportional constant for creep damage.
It is seen in Figures 9 and 11 that the DSA effect is

more pronounced at higher strain amplitudes and lower
strain rates at 673 K to 873 K (400 �C to 600 �C), and
hence this would result in an increased D-factor by
Eq. [31], given that the creep strain at these intermediate
temperatures is minimal. As shown in Figure 17, the
LCF life at 673 K to 873 K (400 �C to 600 �C) is indeed
significantly reduced at high strain amplitudes, as
compared to the RT baseline. As temperature increases
to 1073 K and 1173 K (800 �C and 900 �C), the DSA
term in Eq. [31] becomes negligible or have no effect at

Fig. 18—Oxidation curve of 1.4848 stainless steel at 1173 K
(900 �C).

Table III. Life Prediction Parameter

Mechanism
Fatigue DSA

Creep
Oxidation: kox = k0exp(�Q/RT)

Parameter (unit) Wpl0 (10
4 N m�2) d a (m2) q0 (m

�2) b k0 (m
2/s) Q (kJ) KIC/Y (MPa�m)

Value 11,336 �0.508 0.228 9 10�12 3.71 9 1012 1200 1.7 231 32

METALLURGICAL AND MATERIALS TRANSACTIONS A



all, since the cyclic hardening is balanced by the creep
softening, but the creep damage term remains in
Eq. [31].

In addition to mechanical fatigue and creep, at high
temperatures, oxidation plays an important role. The
oxidation curve of 1.4848 austenitic stainless steel at
1173 K (900 �C) is shown in Figure 18. The parabolic

law constant is calibrated to the curve. As shown in
Figure 18, the combination of creep and oxidation does
reduce the LCF life significantly in comparison with the
RT-LCF life where the above effects are absent.

Fig. 19—Striations on room-temperature fatigue fracture specimen
with 0.7 pct strain range.

Fig. 20—Fracture surface of specimen fatigued with 0.7 pct strain
range at 0.002 s�1, 673 K (400 �C).

Fig. 21—Fracture surface of specimen fatigued with 0.7 pct strain
range at 0.002 s�1, 873 K (600 �C).

Fig. 22—Fracture surface of specimen fatigued with 0.7 pct strain
range at 0.002 s�1, 1073 K (800 �C). The white spots are areas of
high Ni content.
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Considering all the above mechanisms and effects, the
model predictions are shown (as lines) in comparison
with the experimental data. Themodel parameters for life
prediction are given in Table III. As indicated by
Eq. [27], the interaction between creep and oxidation is
non-linear. Creep deformation on one hand reduces the
LCF life by a factor ofD as expressed by Eq. [31], but on
the other hand, it lowers the peak stress, which allows the
specimen to tolerate a longer crack, thus increasing the
crack propagation life. Similarly, lowering the control-
ling strain rate allows more creep deformation to relax
the peak stress, but it also allows more time of oxidation
per cycle. All such conflicting effects result in a rather
frequency-insensitive behavior of LCF life of 1.4848 steel
at high temperature (see Figure 17), which is also
reflected in the model curves for 1073 K and 1173 K
(800 �C and 900 �C) at different strain rates.

Seifert et al. used a crack-tip plastic blunting model to
describe the LCF and TMF behavior of 1.4849 steel.[31]

Their model, however, does not separate the mecha-
nisms of plasticity and creep, nor does it consider
oxidation explicitly. The ICFT model quantitatively
delineates the effects of the above mechanisms, so that
they can be tailored in material design to yield the
optimum performance.

C. Fractographic Observation

Using SEM, it was observed that the RT fracture
surface contained typical striations that indicate trans-
granular fatigue fracture as shown in Figure 19. Fatigue
fracture at 673 K to 873 K (400 �C to 600 �C) was also
transgranular, however, DSA led to a concentrated
slip-band pattern, as shown in Figures 20 and 21. At

1073 K (800 �C), the fatigue specimen failed predomi-
nantly by an intergranular fracture mode, as shown in
Figure 22. On the fracture surface of the specimen failed
at 1173 K (900 �C), extensive oxidation and formation
of voids or cavities can be observed, as shown in
Figure 23. The above metallurgical evidence supports
that creep has a significant effect on fracture at 1073 K
to 1173 K (800 �C to 900 �C). These fractographic
observations corroborate with the model descriptions.

V. CONCLUSION

The mechanism-based constitutive model is developed
within the framework of ICFT for 1.4848 austenitic
stainless steel. As a limiting case, the ICFT model
predicated that deformation and fatigue at low temper-
ature are controlled by plasticity. At the intermediate
temperatures, 673 K to 873 K (400 �C to 600 �C), due
to the effect of DSA which increases the drag stress of
plasticity, the material cyclic hardens continuously until
failure. The model attributes the reduction of fatigue life
to the internal damage related to the excess dislocation
density caused by slip concentration. At high tempera-
tures, 1073 K and 1173 K (800 �C and 900 �C), both
creep and oxidation come into play, the ICFT specif-
ically delineates the effects of the two mechanisms in a
non-linear combination, which is expressed as the ratio
of the oxidation penetration to the critically tolerable
crack length, h/ac. The onset of creep at high temper-
ature would reduce the flow stress and hence reducing
the h/ac ratio, which means increase the LCF life, but at
the same time creep physically creates internal damage
that would knockdown the fatigue life by a factor of D,
as in Eq. [31]. The model descriptions of the cyclic
stress–strain behavior, LCF life, and fracture modes all
agree very well with the experimental observation and
post-mortem fractographic examinations on 1.4848
austenitic stainless steel. Therefore, the model is able
to faithfully capture the underlying deformation/dam-
age mechanisms and quantify contribution from each
mechanism. The understanding can be used in mate-
rial/component design to optimize the performance.
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