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Modeling failure risk in buried pipes using fuzzy Markov deterioration 

process 

1*
Yehuda Kleiner, 

2
Rehan Sadiq, and 

1
Balvant Rajani 

ABSTRACT: Numerous models have been proposed in the last two decades for the 

deterioration of buried pipes. The most prominent approach has been the Markovian 

deterioration processes (MDP), which requires that the condition of the deteriorating 

system be encoded as an ordinal condition state. This encoding is based on numerous 

distress indicators obtained possibly from direct and indirect observations, as well as 

from non-destructive tests. To date, few buried pipes have been inspected and their 

condition assessed. In addition, the encoding of distress indicators into condition 

states is inherently imprecise and involves subjective judgment. Furthermore, the 

consequences of failure for buried pipes are often difficult to quantify precisely due to 

lack of data. 

In this paper, a new approach is presented to model the deterioration of buried pipes 

using a fuzzy rule-based, non-homogeneous Markov process. This deterioration 

model yields possibility of failure at every point along the life of the pipe. The 

possibility of failure, expressed as a fuzzy number, is coupled with the failure 

consequence (also expressed as a fuzzy number) to obtain the failure risk as a 

function of the pipe age. The use of fuzzy sets and fuzzy techniques help to 

incorporate the inherent imprecision and subjectivity of the data, as well as to 

propagate these attributes throughout the model, yielding more realistic results. At 

the time of submission, adequate and sufficient data to validate the model were not 

available.  

 

1 Introduction 

Large buried pipes typically have low failure rates but when they fail the 

consequences can be quite severe. This low rate of failure, coupled with high cost of 

inspection and condition assessment, have contributed to the current situation where 

most municipalities lack the data necessary to model the deterioration rates of these 

assets and subsequently to make rational decisions regarding their renewal. 

The condition assessment of a large buried pipe comprises two steps. The first step 

involves the inspection of the pipe using direct observation (visual, video) and/or 

non-destructive evaluation (NDE) techniques (radar, sonar, ultrasound, sound 

emissions, eddy currents, etc.), which reveal distress indicators. The second step 

involves the interpretation of these distress indicators to determine the condition state 

of the pipe. This interpretation process is dependent upon the inspection technique. 

The interpretation of the visual inspection results, although based on strict guideline, 

can often be influenced by subjective judgment. The interpretation of NDE results on 

the other hand, is often complex (at times proprietary) and imprecise. 
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Managing the failure risk of large buried pipes requires a deterioration model to 

enable the forecast of the asset condition as well as its possibility of failure in the 

future. Significant research effort has been carried out in the last two decades to 

model infrastructure deterioration. The Markov deterioration process (MDP) is one 

approach that has gained prominence as exemplified by Madanat et al. (1997), Li et 

al. (1997), Abraham and Wirahadikusumah (1999), Wirahadikusumah et al. (2001), 

Mishalani and Madanat (2002), Kleiner (2001) and others. Examples of other types of 

statistical models include Lu and Madanat (1994), Ramia and Ali (1997), Flourentzou 

et al. (1999), Ariaratnam et al. (2001) and others. 

In recent years increased research effort has been dedicated to the application of soft 

computing methods to assess infrastructure deterioration. Soft computing methods 

include techniques such as artificial neural network (ANN), genetic algorithms (GA), 

belief networks (BN), fuzzy sets and fuzzy techniques. Fuzzy techniques seem to be 

particularly suited to model the deterioration of infrastructure assets for which data 

are scarce and cause-effect knowledge is imprecise. Some examples from the 

literature of various applications of fuzzy techniques to infrastructure systems 

include: Chao and Cheng (1998) used a fuzzy-based pattern recognition model to 

diagnose cracks in reinforced concrete structures; Liang et al. (2001) developed a 

multiple-layer fuzzy method for concrete bridge health monitoring; Sadiq et al. 

(2004) employed a fuzzy-based technique for determining the soil corrosivity as a 

surrogate for breakage/corrosion rate in cast iron pipes.. 

2 Fuzzy sets 

A fuzzy set describes the relationship between an uncertain quantity x and a 

membership function µ, which ranges between 0 and 1. A fuzzy set is an extension of 

the traditional set theory (in which x is either a member of set A or not) in that an x 

can be a member of set A with a certain degree of membership µ. Fuzzy techniques 

help address deficiencies inherent in binary logic and are useful in propagating 

uncertainties through models. A general definition of a fuzzy set is given by Dubois 

and Prade (1985): if x is a member of set Ai with a certain degree of membership 

µAi(x), denoted as Ai = {(x, µAi(x))}, then Ai is a fuzzy set if x takes its value from the 

real numbers line and µAi(x) ∈  [0, 1]. 

The proposed models use triangular fuzzy numbers (TFN), as these are often used for 

representing linguistic variables (Lee, 1996). To illustrate the concept, suppose that 

the age of a pipe is defined by five fuzzy subsets (or numbers), each representing an 

aging grade; A1 = “new”, A2 = “young”, A3 “medium”, A4 = “old” and 

A5 = “very old”, as illustrated in Figure 1. The fuzzy subset A3 “medium” for 

example, has a membership function such that for age x below 20 years or above 60 

years the membership to “medium” is zero, and for age between 20 and 60 years the 

membership follows straight lines that form a triangle. Fuzzy set A comprises the 

collection of the five subsets (or numbers) Ai. The fuzzy subsets Ai are triangular 
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fuzzy numbers that can be defined by three points representing the three vertices of 

the respective triangle, as shown in Figure 1.  

In this example, it can be seen that for a pipe of age x = 50 years the membership 

values are µA3
(x) = 0.40, and µA4

(x) = 0.52 and zeros for µA1
(x) µA2

(x) and µA5
(x). The 

5-tuple fuzzy set representing the buried pipe at age 50 can be written as the vector 

A = (µA1
(x), µA2

(x), µA3
(x), µA4

(x), µA5
(x)) = (0, 0, 0.40, 0.52, 0), in which each 

element (tuple) depicts the pipe’s membership value to the corresponding subset of 

aging grade (from new to very old). 

There is a whole range of arithmetic operations defined for triangular fuzzy numbers 

Details of these arithmetic manipulations are described by Klir and Yuan (1995). The 

term “defuzzification” refers to a process to evaluate a crisp or point estimate of a 

fuzzy number. A defuzzified value is generally represented by a centroid, often 

determined using the center of area method (Yager, 1980). 

 
subset Qualitative scale TFN representation 

A1 New (0, 0, 20) 

A2 Young (0, 20, 30) 

A3 Medium (20, 40, 60) 

A4 Old (40, 70, 100) 

A5 Very old (70, 100, 100) 
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Figure 1. Example of fuzzy sub-sets (numbers). 

3 The fuzzy rule-based algorithm  

In fuzzy rule-based modeling, the relationships between variables are represented by 

means of fuzzy if-then rules of the form “If antecedent proposition then consequent 

proposition”. The antecedent proposition is always a fuzzy proposition of the type “x 

is A” where x is a linguistic variable and A is a linguistic constant term. The 

proposition’s truth-value (a real number between zero and 1) depends on the degree 
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of similarity between x and A. This linguistic model (Mamdani, 1977) has the 

capacity to capture qualitative and highly uncertain knowledge in the form of if-then 

rules such as 

Ri: If x is Aj then y is Bk;  i = 1, 2, …, L;  j = 1, 2, …, M; k = 1, 2, …, N (1) 

(2) 

(3) 

 

where x is the input (antecedent) linguistic variable and Aj is an antecedent linguistic 

constant. (one of M in set A) Similarly, y is the output (consequent) linguistic variable 

and Bk is a consequent linguistic constant (one of N in set B). The values of x and y, 

and Aj and Bk are fuzzy sets defined in the domains of their respective base variables. 

The linguistic terms Aj and Bk are selected from sets of predefined terms, such as 

small, medium, large. The rule set (comprising L rules) and the sets A and B 

constitute the knowledge base of the linguistic model. Each rule is regarded as a 

fuzzy relation: Ri (X × Y) → [0, 1]. This relation can be computed in two basic ways - 

by using fuzzy implications or fuzzy conjunctions, (Mamdani method), which were 

used in the proposed model. There are several steps involved in the Mamdani method, 

as described in Mamdani (1977) and in relevant textbooks, e.g., Yager and Filov 

(1994). The entire procedure can be summarized as  

y = x o R  

which means that if the rule set R is established, then for every input x, output y can 

be calculated (or inferred) using the appropriate operator “o”. A fuzzy set can be 

“defuzzified”, i.e. assigned a representative crisp value. There are several techniques 

in the literature for defuzzification, but the one used here is the most widely accepted 

technique known as the centroidal method (Yager, 1980).  

The Mamdani inference algorithm can be extended to multiple inputs and single 

output (MISO): 

Ri: If x1 is A1j and x2 is A2j and….and xp is Apj then y is Bk  

4 Fuzzy rule-based Markovian deterioration process (FR-MDP) 

4.1 The knowledge base 

Figure 2 depicts the knowledge base for the proposed deterioration model. The age A 

of the pipe is partitioned into 5 levels (from new to very old), represented by triangular 

fuzzy subsets Ai (i = 1,2,…,5), with underlying units of years. Similarly, the condition 

C of the pipe is partitioned into 7 levels (from excellent to failed) represented by 

triangular fuzzy subsets Ci (i = 1,2,…,7). C is mapped onto an arbitrary unitless 

relative scale in the interval [0,1]. It should be noted that the failed state does not mean 

that collapse has already occurred (in which case the membership would be a clear 

unity), rather that it is imminent. The deterioration rate D’ is partitioned into 5 levels 

(from very slow to very fast) represented by triangular fuzzy subsets D’i (i = 1,2,…,5). 

D’ is mapped onto a dynamic relative scale with underlying units of membership per 
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Ri = If pipe age (A) is “A” and pipe condition state (C) is “C” then deterioration rate (D) is “D’” (at time = t) 

Pipe condition (C):  Excellent Good    Adequate   Fair       Poor          Bad      Failed
     

Age (A): New     Slow    Average        Fast  Very fast        Very fast Very fast        Very fast 

  Young     Slow    Average        Fast     Fast           Fast Very fast        Very fast 

  Medium  Very slow     Slow      Average  Average           Fast     Fast        Very fast 

  Old  Very slow   Very slow      Slow    Slow         Average  Average            Fast 

  Very old  Very slow   Very slow    Very slow   Slow           Slow  Average          Average 

Knowledge-base

Deterioration rate    Min MLV Max 

 

Very slow 0 0 d0 

Slow  0 d0 2d0 

Average  d0 2d0 3d0 

Fast  2d0 3d0 4d0 

Very fast 3d0 4d0 4d0 

Very fastAverage Fast 
Very 

slow

0 d0 2d0 3d0 4d0 

M
em

b
er

sh
ip

  

µD = 1.0 
Slow 

Deterioration rate (membership shifted/year)

Condition state Min MLV Max 

 

Excellent 0 0 0.17 

Good  0 0.17 0.33 

Adequate 0.17 0.33 0.50 

Fair  0.33 0.50 0.67 

Poor  0.50 0.67 0.83 

Bad  0.67 0.83 1 

Failed  0.83 1 1 

Age  Min MLV Max 

 

New  0 0 20 

Young  0 20 40 

Medium  20 40 70 

Old  40 70 100 

Very old  70 100 100 

Age of the pipe (A, years) 

Very old Old Young Medium New 

0 20 80 60 40 100

M
em
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er

sh
ip

  

µA = 1.0 

Bad 

Pipe condition state (C, qualitatively defined) 

Fair Good 
Exce-

llent

M
em

b
er

sh
ip

µC = 1.0 

Adeq-

uate Poor Failed 

0.83 0.33 0 0.17 1 0.67 0.50 

Fuzzy rule-set RD

 

Figure 2. Fuzzy rule-base for the Markovian deterioration process (FR-MDP)  
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year. The base deterioration rate parameter d0, (Figure 2 – Deterioration rate chart) is 

found through regression as is later explained. The typical range of the deterioration 

scale will usually be between zero and 0.2 membership per year. 

The table at the bottom of Figure 2 depicts the set of fuzzy rules RD governing this 

model. For example, if the asset age is A= young and its condition is C = fair then its 

deterioration rate is D’ = fast. The rule set RD thus contains 35 fuzzy rules. 

4.2 The deterioration process 

The deterioration process is modeled as a “flow” of membership from one condition 

state to the next lower condition state. The deterioration in each time step comprises 

two steps. In the first step, the pipe age is fuzzified (mapped on A). The pipe’s fuzzy 

condition state at time step (taken for convenience as a single year) t is  Ct. The fuzzy 

deterioration at t, D’t is computed using the Mamdani (1977) algorithm detailed 

earlier for the MISO model – equation (3) where At and Ct are the inputs, D’t is the 

output and RD is the fuzzy rule-set by which the fuzzy inferences are made. 

D’t = (At ^ Ct) o RD (4) 

(5) 

 

D’t, is a 5-tuple fuzzy set which is then defuzzified using the center of mass method. 

The defuzzified (crisp) value of the fuzzy deterioration D’t is denoted by Dt. In the 

second step, the condition of the asset in the next time step Ct+1 is calculated from its 

condition state in the current time step Ct and the (defuzzified) deterioration rate Dt 

obtained by rule-based algorithm in the current time step as follows  

Ct+1 = Ct ⊗  Dt  

where Ct is the condition at year t, Dt is the deterioration rate estimated by fuzzy rule 

set from At and Ct and ⊗  is an operator. The exact nature of this operator is discussed 

in detail in Kleiner et al. (2004). In essence it controls the “flow” of membership from 

one condition state to a more deteriorated condition state.  

In traditional Markov deterioration models it is quite possible that at any time step t, 

significant memberships (or probabilities) in more that 3 conditions states can results. 

This outcome would be contrary to intuitive expert opinion. This situation is 

remedied by introducing threshold values, which restrict the membership “flow” from 

one condition state to the next. Figure 3 illustrates an example in which deterioration 

models with and without thresholds are compared. At t = 40 years for example, the 

condition state of the pipe in the model without threshold is approximately 

C40 = {0, 0.09, 0.16, 0.17, 0.20, 0.21, 0.17}, which means that the pipe has relatively 

significant membership value =0.09 to state 2 (good) and membership value 

=0.17 to state 7 (failed) simultaneously. This is of course un-realistic. In contrast, 

the model with threshold yields C

2Cµ
7Cµ

40 = {0, 0.09, 0.36, 0.54, 0, 0, 0}, which is much 

more realistic. Membership to the failed state (state 7) at any given time t can be 

viewed as the possibility (not probability) of failure at that time. 
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In order to train the model to an existing asset one needs to know (or assume) the 

condition state of the asset immediately after installation, and at least one condition 

assessment at a later age t. The model is trained by minimizing the sum of square 

deviations between the observed and predicted membership values for time t. The  
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Figure 3. Deterioration curves without (A) and with (B) membership thresholds. 

parameters that vary in the training process are those controlling the scale and shape 

of the deterioration fuzzy set, namely do and the aforementioned threshold values. 
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In order to validate the proposed model, one needs at least two consecutive 

observations of the asset condition. Further, these observations need to be reasonably 

distant (in time) from each other, to avoid errors due to small inconsistencies due to 

the subjective nature of the condition assessment of an asset. The first observation is 

needed to train the model and predict future deterioration, whereas the second 

observation is required to evaluate the prediction. Unfortunately, the data required for 

model validation were not available, making the validation of the model impossible. 

4.3 Fuzzy possibility of failure 

Fuzzy sets, such as TFNs are often interpreted as possibility distributions (in contrast 

to probability distribution) (Klir and Yuan, 1995). It follows that the membership 

value to the failed condition can be viewed as the possibility of failure. These 

membership values can be mapped onto a secondary fuzzy scale, comprising nine 

grades from extremely low to extremely high, as illustrated in Figure 4. 

 

*Qualitative 

scale 
Min MLV Max 

Extremely low 0 0 0.125 

Very low 0 0.125 0.250 

Quite low 0.125 0.250 0.375 

Moderately low 0.250 0.375 0.500 

Medium 0.375 0.500 0.625 

Moderately high 0.500 0.625 0.750 

Quite high 0.625 0.750 0.875 

Very high 0.750 0.875 1.000 

Extremely high 0.875 1.000 1.000 

0

1

0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

Possibility of failure

M
e
m

b
e
rs

h
ip

 t
o

 g
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d
e

 

Figure 4. Fuzzy possibility of failure 

5 Fuzzy rule-based risk 

Lawrence (1976) defines risk it as a measure of probability and severity of negative 

adverse effects. When a complex system involves various contributory risk items with 

uncertain sources and magnitudes, it often cannot be treated with mathematical rigor 

during the initial or screening phase of decision-making (Lee, 1996). In the realm of 

buried pipes failures, not only is the likelihood of failure difficult to quantify, but 

failure consequences as well. Consequently, consequences of failure will be defined 

on a fuzzy qualitative nine-grade scale from extremely low to extremely severe.  

A fuzzy rule-based MISO model is proposed for the risk analysis. The inputs to the 

model are the fuzzy possibility of failure, which is used in lieu of probability of 

failure, and fuzzy failure consequences. The output is risk level, which is also 

partitioned into 9 levels from extremely low to extremely high. The fuzzy rule-set (81 

rules in total) is shown in Figure 5.  
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Figure 5. Rule-base for fuzzy risk 

For example, immediately after installation a pipe is assumed to have been in a 

condition state represented by the fuzzy set C0 = (0.9, 0.1, 0, 0, 0, 0, 0) meaning 0.9 

membership to excellent and 0.1 membership to good. At age 30 years an inspection 

and condition assessment was carried out and the pipe’s condition was determined to 

be C30 = (0, 0.2, 0.7, 0.1, 0, 0, 0) meaning 0.2 membership to good, 0.7 membership 

to adequate and 0.1 membership to fair. After a regression analysis, the resulting 

deterioration curves are as illustrated in Figure 6 below. 

 

 

 

 

 

 

 

 

 

Figure 6. Example deterioration curves 
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For each year, t, in the life of the pipe, the membership to condition failed is re-

mapped onto a fuzzy set depicting the possibility of failure (Figure 4). 

Next, a pipe-failure consequence is arbitrarily (for this example) assumed to be 

represented by the fuzzy set S = (0, 0, 0, 0, 0, 0.2, 0.5, 0.3, 0), meaning membership 
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values of 0.2, 0.5 and 0.3 to fuzzy subsets moderately severe, quite severe, and very 

severe respectively. The resulting fuzzy risk curve is illustrated in Figure 7. The 

intensity of the gray levels represents the membership values to the respective risk 

levels. The black curve represents the defuzzified risk values. It can be seen that the 

defuzzified values do not always coincide with the highest membership values, which 

means that the fuzzy set representing risk at any year t is not always symmetrical 

about its mode. 
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Medium
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Moderately high
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Figure 7. Fuzzy risk levels over the life of a pipe 

4.  Summary 

The scarcity of data about the deterioration rates of buried infrastructure assets, 

coupled with the imprecise and often subjective nature of assessment of pipe 

condition merits the usage of fuzzy techniques in modeling the deterioration of these 

assets. The deterioration process is modeled as a fuzzy rule-based non-homogeneous 

Markov process applied at each time step in two stages. In the first stage, the 

deterioration rate at the specific time step is inferred from the asset age and condition 

state using a fuzzy rule-base algorithm. In the next stage, the condition state of the 

pipe is calculated from present condition state and deterioration rate. Essentially as 

the deterioration process progresses, the pipe gradually “flows” from higher 

membership in good condition states to higher membership in worse states. The 

process is formulated to mimic the reality in which a given asset at a given time 
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cannot have significant membership values to more than two or three different (and 

consecutive) condition states.  

The deterioration model is trained by non-linear regression in which the sum of 

square deviations between predicted and observed membership values is minimized. 

Data were not available to validate this model, but this should not deter water utilities 

from using it, as the model provides a framework for collecting the appropriate data, 

which would be required to validate any model. The model can be used to predict the 

future deterioration rate of the asset, subject to some judgment-based assumptions. 

Once deterioration curves are obtained, the membership value to the failed state is 

viewed as the possibility of failure and is mapped onto a secondary fuzzy scale with 

nine failure possibility grades ranging from extremely low to extremely high. The 

consequences of pipe failure are defined on a fuzzy scale with nine intensity grades 

ranging from extremely low to extremely severe. The level of risk, which is also 

defined on a nine-grade fuzzy scale from extremely low to extremely high, can then be 

determined (inferred) based on a fuzzy rule base.  
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