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NMR metabolic analysis of samples using fuzzy
K-means clustering

Miroslava Čuperlović-Culf,a∗ Nabil Belacel,a Adrian S. Culf,b Ian C. Chute,b

Rodney J. Ouellette,b Ian W. Burton,c Tobias K. Karakachc

and John A. Walterc

The global analysis of metabolites can be used to define the phenotypes of cells, tissues or organisms. Classifying groups of
samples based on their metabolic profile is one of the main topics of metabolomics research. Crisp clustering methods assign
each feature to one cluster, thereby omitting information about the multiplicity of sample subtypes. Here, we present the
application of fuzzy K-means clustering method for the classification of samples based on metabolomics 1D 1H NMR fingerprints.
The sample classification was performed on NMR spectra of cancer cell line extracts and of urine samples of type 2 diabetes
patients and animal models. The cell line dataset included NMR spectra of lipophilic cell extracts for two normal and three cancer
cell lines with cancer cell lines including two invasive and one non-invasive cancers. The second dataset included previously
published NMR spectra of urine samples of human type 2 diabetics and healthy controls, mouse wild type and diabetes model
and rat obese and lean phenotypes. The fuzzy K-means clustering method allowed more accurate sample classification in both
datasets relative to the other tested methods including principal component analysis (PCA), hierarchical clustering (HCL) and
K-means clustering. In the cell line samples, fuzzy clustering provided a clear separation of individual cell lines, groups of cancer
and normal cell lines as well as non-invasive and invasive tumour cell lines. In the diabetes dataset, clear separation of healthy
controls and diabetics in all three models was possible only by using the fuzzy clustering method. Copyright c© 2009 Crown in
the right of Canada. Published by John Wiley & Sons, Ltd.

Keywords: fuzzy clustering; sample classification; metabolomics; metabolic profiling; mixture analysis; sample subtypes; 1H NMR;
phenotype analysis

Introduction

Functional genomics and systems biology utilise a range of high-

throughput molecular methods (’omics’) in conjunction with

bioinformatics and computational biology in order to provide

a new framework for elucidation of disease aetiology. These

methods are also attempting to uncover latent connections

between seemingly disparate disease states through holistic

analysis.[1 – 4] In this context, an interest in high-throughput

analysis of metabolites has grown considerably as the metabolome

represents the most direct reflection of the cell state, in contrast

to proteomics and transcriptomics in which regulatory effects

hamper clear interpretation of the results.[5,6] Measurement of

small-molecule metabolites, either endogenous or exogenous,

provides a chemical fingerprint of an organism’s metabolic

state.[1,3,7,8] The results of metabolomic analysis can be used

either for sample type determination or for the analysis of

metabolite properties. In both of these applications, classification

of data is an essential step. In sample analysis, classification is

performed in order to (i) determine whether the studied data

contain sufficient information to make a distinction between

pre-assigned sample types and/or (ii) to determine new sample

classes or new relationships between sample classes. In metabolite

analysis, classification is performed in order to determine

relationships between metabolites – involvement in the same

or co-regulated pathways and possible functions of unknown

metabolites through the analysis of their clustering partners.[9,10]

Only a handful of different clustering and visualisation methods

have been used thus far in metabolomics data analysis. Methods

for dimensionality reduction are still the most popular in the

analysis of samples, although their application has recently been

under increasing criticism[11,12] as they only show major trends

in data.

Several authors have previously presented the application of

some basic clustering tools. Hierarchical clustering (HCL) was

shown to be effective for the determination of structurally related

metabolites derived from the same biochemical precursors.[13]

An application of HCL in sample analysis has also been

demonstrated.[7] Work by Hageman et al.[6] introduced K-means

clustering and bootstrap aggregation to the analysis of metabolite

information obtained from a high-throughput analysis. This has

shown that K-means clustering with bootstrap aggregation is very

robust and highly appropriate for metabolite classification. Several

publications presented the application of self-Organised maps
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(SOM) for sample classification with excellent results, particularly

in the analysis of serum samples in clinical applications.[14]

All of these methods are crisp (hard) clustering approaches

that are based on the assumption that each data object should

be assigned to only one cluster. The restriction of this one-to-

one mapping might not be optimal, especially in the analysis

of biological data. The adaptability of cells and the diversity

in cellular responses to various internal and external stimuli

are accomplished through the cooperation and multi-functional

properties of a limited number of biological molecules[15 – 17].

Furthermore, differences between biological samples are often

not explicit due to different phenotypical influences.[2] Fuzzy

clustering methods allow data objects to be assigned to multiple

clusters. The result of fuzzy clustering calculation is the matrix

of membership degrees that describe the level of similarity

between each feature and each cluster centroid. Several different

fuzzy clustering methods utilising different approaches for the

calculation of centroids as well as membership values were

developed including fuzzy K-means (F-KM),[16,17] fuzzy J-means[15]

and fuzzy SOM.[18] These and other fuzzy methods were previously

utilised in the analysis of transcriptomics data with excellent

results.[15,17] The advantage of fuzzy classification becomes

particularly apparent in the analysis of overlapping groups of

objects as well as subgroups in conjunction with the separation of

major groups.

In the following, we present two applications of the F-KM

method for the classification of breast cell line metabolic profiles

and metabolic profiles of urine samples in diabetic patients and

appropriate animal models. F-KM is a fuzzy version of standard

K-means clustering. In F-KM clustering, each point (in this case

sample) has an overall membership, i.e. sum of membership

values for all clusters, of 1. This overall membership is apportioned

to clusters based on the similarity between the point’s (in this

case samples) profile (here metabololic fingerprint) and the

profile of cluster’s centroid. From the membership values, it

is then possible to determine different levels of co-clustering

between points – based on the top membership, second highest

membership etc.

In this work, different clustering methods were tested and

compared with F-KM for their ability to separate major classes – in

the first dataset – breast cancer and normal cell lines and for second

dataset – NMR of urine samples of three species. The methods were

further challenged to separate sample subtypes – in cancer cell

lines, invasive and non-invasive tumours and in urine samples

healthy and diabetic subjects. Fuzzy classification was the only

method tested that allowed distinction on both major groups and

sample subtypes.

Experimental

Experimental set

All cell lines were obtained from ATCC (Manassas, VA, USA) and

cultured as monolayers to 75–85% confluency in T175 cm2 flasks

(Corning) at 37 ◦C. All media and components were purchased

from Invitrogen unless otherwise noted. MCF10a and MCF12a

cells were grown in Dulbecco’s modified Eagle’s medium/Ham’s

F12 (1 : 1, v/v) supplemented with 2 mM L-glutamine, 1 mM sodium

pyruvate, 20 ng/ml epidermal growth factor (Sigma Aldrich),

100 ng/ml cholera toxin (Sigma Aldrich), 0.01 mg/ml bovine insulin

(Sigma Aldrich), 500 ng/ml hydrocortisone (Sigma Aldrich), 5%

fetal bovine serum (Hyclone) and penicillin/streptomycin (100U/ml

and 100µg/ml, respectively). MCF7 cells were grown in Dulbecco’s

modified Eagle’s medium supplemented with 10% fetal bovine

serum (Hyclone), 2 mM L-glutamine and penicillin/streptomycin.

MDA-MB231 and MDA-MB468 cells were grown in Leibovitz’s L-

15 medium supplemented with 2 mM L-glutamine and 10% fetal

bovine serum (Hyclone).

Cells were washed twice with phosphate-buffered saline (PBS)

and then harvested by trypsinisation. Recovered cells were

re-suspended in PBS, counted using a haemacytometer, then

aliquoted into microcentrifuge tubes as five replicates. The cells

were then pelleted in polypropylene microcentrifuge tubes by

spinning at 800× g for 2 min and the PBS removed. The number

of cells per aliquot/replicate is outlined in Table 1 together with

general characteristics of these cell lines.

Lipids were extracted using a modified version of the method

described in Ref. [21]. Cell pellets were re-suspended in 500-

µl ice-cold 2 : 1 methanol/chloroform mix (v/v), vortexed and

then agitated on a shaking platform for 10 min at 4 ◦C. Two

hundred and fifty micro litres of ice-cold chloroform was added

and the samples were vortexed. Two hundred and fifty micro

litres of ice-cold water was then added and the samples vortexed

again. An ultrasonic bath (FS110H, Fisher Scientific) was used

to sonicate the samples for 10 min at 25 ◦C. The samples were

then spun in a microcentrifuge at 15 000× g for 5 min at 4 ◦C.

The bottom (chloroform) layers were removed carefully, avoiding

pelleted debris using glass Pasteur pipettes and placed in separate

polypropylene microcentrifuge tubes. Solvents were evaporated

by spinning the samples in a SPD111V SpeedVac concentrator

(Thermo). Dried pellets were stored at −80 ◦C in the dark awaiting

subsequent NMR analysis.

1H NMR spectroscopy of lipophilic cell extracts

All 1H NMR experiments were performed on a Bruker DRX-500

spectrometer at 500.13 MHz at 20 ◦C. Dried samples supplied

Table 1. General characteristics of the selected breast cell lines

Cell line Type Characteristics Morphology Cell count per aliquot (million); <10% error

MCF12a Normala Adherent cells Epithelial 3

MCF10a Normala Adherent cells Epithelial 10

MB231 Adenocarcinoma Invasive, metastatic Epithelial 8

MB468 Adenocarcinoma Invasive, metastatic Epithelial 10

MCF7 Adenocarcinoma Non-invasive Epithelial 5

The information is obtained from Refs [19,20].
a Immortalised normal breast epithelial cells from diploid human breast epithelial cells of two different patients: line MCF12a derived from healthy
patients and MCF10a derived from patients with fibrocystic disease.

Magn. Reson. Chem. 2009, 47, S96–S104 Copyright c© 2009 Crown in the right of Canada. www.interscience.wiley.com/journal/mrc
Published by John Wiley & Sons, Ltd.
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in vials kept on dry ice were dissolved in 750 µl CDCl3 and

placed in Wilmad 535pp 5-mm glass NMR tubes. 1H spectra

were obtained with a 5-mm triple-band inverse (TBI) triple-axis

gradient probe, tuned and matched for each sample, using a

sequence consisting of a 90◦ pulse (5.7 µs) followed by a 4.365-s

acquisition time (AQ) and 2-s relaxation delay (D1), accumulating

128 scans after eight dummy (unrecorded) scans. Spectral width

was 15.011 ppm (7507.5 Hz). Receiver gain RG was maintained

constant for all spectra. Spectra were processed with MestRe-

C software (Mestrelab Research) using an exponential window

function with line broadening 0.3 Hz. Phased spectra were referred

to the residual CHCl3 peak at 7.26 ppm. The baseline correction

was performed by Whittaker smoothing and subtracting (provided

in MestRe-C software).

All spectral data were binned using a 0.005 ppm bin size. Only

data in the range [7–0] ppm were included in the study. The interval

1.95–1.52 ppm was excluded from the analysis as recommended

by Gottschalk et al.[22] due to the intensity and chemical shift

variation of the signal from residual water. The approximate

concentrations of major detectable metabolites were measured

from NMR peak integrals determined as direct sums of data points

in the spectral range. The integrals were obtained using MestRe-C

software (Mestrelab Research).

Type II diabetes dataset

Type II diabetes dataset was previously measured and described

by Salek et al.[23] The data included 270 1H NMR spectra of urine

samples measured using 1D NOESY pulse sequence with water

pre-saturation. Measurements were performed at three different

instruments with three different magnetic field strengths. Urine

samples were collected for wild type and db/db homozygote

and heterozygote (with marked diabetic phenotype) male and

female mice; obese Zucker (fa/fa) and lean (fa/+) rats and healthy

controls and diabetic patient human subjects. The measurements

were performed at field strength for 1H of 400 MHz for mouse,

600 MHz for rat and 700 MHz for human samples. Details of the

experimental procedure and results are provided in the original

publications.[23]

Fuzzy K-means clustering methodology

The crisp clustering methods assign each object (sample) to only

one cluster. In fuzzy clustering methods, an indicator variable

showing whether an object is a member of a given group/cluster

is extended to a weighting factor called membership (w). The

membership has values between 0 and 1, where membership

close to 1 indicates strong association with the cluster and

values close to 0 indicate weak or absent association with the

cluster. The membership values are calculated for each point with

different membership value calculated for each cluster. With this

approach, each point can possibly have a significant belonging

to multiple clusters, to only one cluster and even to no cluster

(if all membership values for the point are equal to one/number

of clusters), thus preventing over-fitting. In other words, the goal

of fuzzy clustering of samples is to assign a sample based on

its metabolic signature to a given number of clusters such that

any sample can belong to more than one cluster, with a different

degree of membership.

F-KM is a fuzzy logic extension of the classic, crisp, K-means

method.[16] For a chosen number of clusters, c, and dataset

matrix n × m, the F-KM method is used to calculate the n × c

matrix W = [wik], where wik is the membership degree of

an object (sample, metabolite or spectral bin) i(i = 1, . . . , n) to

cluster k(k = 1, . . . , c). The membership values and the centroid

positions are calculated from the minimisation of the objective

function defining the quality of the obtained result. The exact

F-KM formalism is described in detail elsewhere([15,16] and

references therein). Briefly, the membership values and the

centroid positions are calculated from the objective function

Jm(W , V) defined as

(minw,v)Jm(W , V) =

n∑

i=1

c∑

k=1

wm
ik dist(xi , vk)

where W is the matrix containing membership values, m is the

fuzziness parameter that regulates the degree of fuzziness in the

clustering process, V = [vk] is a matrix of centroids i.e. positions of

cluster centres, X = [xi] is the matrix of point profiles and dist(xi , vk)

is a measure of distance between data point and centroid. A range

of different distance measures can be applied as part of F-KM.

For the datasets analysed in this work, absolute value distances

resulted in the most accurate clustering result and were used.

Cluster validity was measured using Rand indexes, Ri (see below).

For the NMR spectral profiles of cell lines clustered using F-KM

into five sample clusters: Ri = 0.80 for absolute value distances;

Ri = 0.74 for Euclidian distance matrix and Ri = 0.75 for cosine

dissimilarity matrix. The degree of fuzziness in the clustering

process is regulated by the fuzziness parameter, m, with m = 1

giving the crisp clustering and with an increasing fuzziness of the

result with m increasing ultimately leading to clustering result for

all points being wik = 1/c for all i and k. A previously devised

empirical rule about the optimal m parameter[15,24] suggests that

an optimal m value should lead to (i) the median of the top

membership values being ≥0.5 (prevents the results from being

overly fuzzy) and (ii) the median of all membership values being

≥0 (prevents the results from becoming crisp). The analysis has

shown that for these datasets an optimal value of m is 2, which is

in agreement with the value originally suggested by Bezadek[16]

for the general application of F-KM. For breast cell line dataset,

the median of all membership values was 0.063 and the median

of top membership values was 0.894. For type II diabetes dataset,

the median of all membership values was once again 0.063 and

the median of top membership values was 0.73.

The implementation of F-KM in Partek Genomics Suite (Partek

Inc.) was used for the calculations. The F-KM algorithm is freely

available as a Matlab routine from Matlab Central.

Quality assessment

Standard external measures, Rand and Jaccard Coefficients, were

utilised for the assessment of cluster (U) quality in comparison to

the known class labels (P). The coefficients are calculated as

Rand =
n11 + n00

n11 + n10 + n01 + n00

Jaccard =
n11

n11 + n10 + n01

where n11 is the positive agreement term, which represents

number of object pairs having the same cluster and the same

class, that is, Uij = 1, Pij = 1; n10 is the number of object pairs

having the same cluster but a different class, that is, Uij = 1, Pij = 0;

n01 is the number of object pairs having a different cluster but

www.interscience.wiley.com/journal/mrc Copyright c© 2009 Crown in the right of Canada. Magn. Reson. Chem. 2009, 47, S96–S104
Published by John Wiley & Sons, Ltd.
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Figure 1. 1D 1H NMR spectra (500 MHz, solvent CDCl3) of the lipophilic fraction for five breast cell lines. The represented spectra are the averages for five
replicates of: A-MDA-MB231; B-MDA-MB468; C-MCF10A; D-MCF12A and E-MCF7. The metabolite assignments are given in Table 2.

the same class, that is, Uij = 0, Pij = 1 and n00 is the negative

agreement term, i.e. number of object pairs having a different

cluster and a different class, that is, Uij = 0, Pij = 0. The Rand index

assesses the degree of similarity between U and P via a function

of positive and negative agreements in the binary matrices, while

Jaccard ignores the negative agreement term.

Results

NMR spectra of five biological replicates of five types of human

breast cell lines – MCF10a, MCF12a, MCF7, MB231 and MB468

(Table 1) were recorded and analysed. Figure 1 shows 1H NMR

spectra of the analysed cell lines. Each spectrum represents the

average of five biological replicates of the lipophilic fractions. The

mean variance of spectra across five replicates was less than 1%

for all tested cell lines. The suggested peak assignments based on

the published data[18,22,25,26] as well as the analysis of metabolic

spectral databases[27 – 29] are included in Fig. 1 and are defined in

Table 2. In addition to the proposed assignments, Table 2 includes

the proton chemical shift ranges for the peaks. Further, Table 2

includes mean values across cell replicates of normalised peak

integral intensities for each of the five cell lines. Corresponding

standard deviations are also provided. The concentration values

are presented here only as estimates obtained from peak integrals

and are not meant for detailed metabolite analysis. We have

excluded the interval 1.52–1.95 ppm from further study due to the

intensity and chemical shift variation of residual water signal.[22]

The main resonances observed were from saturated and

unsaturated lipids, cholines (choline, and overlapping peaks for

phosphocholine and glycerophosphocholine) and cholesterol.

Most of the metabolites observed in these measurements are

in agreement with previously detected metabolites in other cell

line types as well as breast cancer tissues.[22,25]

Cluster analysis of metabolic profiles

Four different classification methods were tested on the breast

cancer cell line dataset and on the previously published urine

metabolomics data for diabetes analysis.[23] The methods pre-

sented in this work included one visualisation method, two crisp

clustering methods as well as fuzzy clustering method. Princi-

ple component analysis (PCA) is one of the major visualisation

methods used in metabolomics analysis. Hierarchical clustering

method allows automatic sample separation – without the need

for user-defined number of clusters. The other crisp clustering

method tested was K-means clustering. This is a standard, highly

popular method for separation of objects into user-defined num-

ber of clusters. Finally, sample classification was performed using

the fuzzy version of K-means clustering – fuzzy K-means (F-KM).

The results of PCA and HCL classification for breast cancer cell

lines are shown in Fig. 2 and for type 2 diabetes dataset in

Fig. 3.

The result of K-means clustering is presented in Fig. 4. K-means

method assigns each sample to one cluster with five clusters in

breast cell lines dataset (five cell line types) and six clusters in the

diabetes dataset (three species with wild type and diabetic model

in each).

K-means analysis also allows direct calculation of cluster quality

coefficients. In the datasets studied, we had predetermined sample

class labels, phenotypes, and thus the cluster quality was calculated

using external indices Rand and Jaccard for both studied datasets

(Table 3).

F-KM clustering facilitates the identification of subclasses of

objects by allowing the objects to belong to more than one

group. F-KM clustering was performed using a fuzziness parameter,

m = 2, and an absolute value distance matrix with five clusters for

breast cell line samples and six groups for type 2 diabetes dataset.

Direct analysis of membership values (Fig. 5(A)) had shown that

normal cell lines (MCF10A and MCF12A) as well as the non-

invasive tumour cell line (MCF7) can be easily separated on the

basis of the top membership values. The two invasive cell lines

(MB231 and MB468) are co-clustered on the basis of the top

membership value (for both cell lines, top membership values are

for cluster 3); however, the second highest membership values

are different for the two invasive cell lines (the second highest

membership is to cluster 4 for MB231 and cluster 5 for MB468 cell

line). This result shows a similarity between the two invasive cell

lines when compared with the normal and non-invasive cancer

cell lines. However, further analysis of fuzzy membership values

shows that there are observable differences between these two

cell lines. Major trends in the top membership values can be

Magn. Reson. Chem. 2009, 47, S96–S104 Copyright c© 2009 Crown in the right of Canada. www.interscience.wiley.com/journal/mrc
Published by John Wiley & Sons, Ltd.
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Table 2. Assignment of major peaks in the spectra

Assignment Chemical shift (ppm)
MCF10A
(n = 5)

MCF12A
(n = 5)

MCF7
(n = 5)

MB231
(n = 5)

MB468
(n = 5)

1 C18/C19 cholesterol CH3 0.65−0.7 0.017 0.015 0.011 0.016 0.016

(0.001) (0.007) (0.004) (0.004) (0.002)

2 Triglyceride terminal CH3 0.79−0.94 0.135 0.150 0.125 0.135 0.136

(0.007) (0.009) (0.009) (0.007) (0.006)

3 Lipid, cholesterol (CH2)n 1.2−1.4 0.6 0.612 0.59 0.580 0.58

(0.007) (0.009) (0.01) (0.008) (0.01)
a Lipid CH2CH2COO, water 1.5−1.95

4 Lipid CH2CH CH 1.97−2.1 0.064 0.046 0.068 0.055 0.062

(0.005) (0.004) (0.004) (0.006) (0.003)

5 Lipid CH2COO 2.2−2.4 0.049 0.045 0.054 0.047 0.049

(0.002) (0.005) (0.003) (0.004) (0.003)

6 L-methioninea 2.58−2.64 0.001 0.002 0.001 0.000 0.000

(0.002) (0.002) (0.002) (0.001) (0.001)

7 Lipid C CHCH2CH C 2.75−2.88 0.01 0.017 0.015 0.026 0.019

(0.002) (0.002) (0.002) (0.001) (0.001)

8 Lipid CH2NH3+ 3.2−3.35 0.003 0.004 0.0061 0.0053 0.006

(0.0003) (0.001) (0.0005) (0.0002) (0.001)

9 Lipid N + (CH3)3 3.35−3.45 0.0470 0.0362 0.043 0.0412 0.041

(0.0008) (0.0009) (0.003) (0.0009) (0.001)

10 Glycerol or derivatives 3.45−3.75 0.0066 0.01 0.009 0.010 0.008

(0.0007) (0.01) (0.002) (0.003) (0.002)

11 Lipid CH2OPO2− 3.88−3.98 0.0283 0.017 0.032 0.028 0.028

(0.0009) (0.009) (0.002) (0.004) (0.007)

12 Lipid CH2OCOR 5.18−5.30 0.0053 0.0062 0.008 0.0068 0.008

(0.0001) (0.0002) (0.0003) (0.0003) (0.0005)

13 Lipid CH CH 5.30−5.45 0.034 0.0337 0.041 0.049 0.045

(0.001) (0.0009) (0.002) (0.001) (0.001)

Chemical shift range is included. The peak positions are shown in Fig. 1. Concentration of all metabolites estimated from peak integrals are given for
all cell lines. The mean values across replicates normalised to total spectral intensity determined as sum of all integrals are shown, with calculated
standard deviations of five replicates shown in parentheses.
a Large standard deviation relative to the intensity indicates that L-methionine comes as an impurity in the lipophilic fraction.

Figure 2. A. PCA of 1H NMR spectral profiles of metabolites for the replicates of five cell lines. Each data point represents a sample with replicates for
each cell type and total of 24 samples (outlier replicate of MCF7 cell line was removed from this analysis). The total variation explained by PCs 1, 2 and
3 is 71.1%. The dispersion matrix is calculated using covariance. Ellipses represent two standard deviation from the centroid for each cell line group.
B. Hierarchical clustering result for the 24 cell lines samples. The clustering was performed using Euclidian distance calculation. Colour version of the
figure is available as Supplementary Material on MRC Web site. Coding is given in the legend.

www.interscience.wiley.com/journal/mrc Copyright c© 2009 Crown in the right of Canada. Magn. Reson. Chem. 2009, 47, S96–S104
Published by John Wiley & Sons, Ltd.
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Figure 3. A. PCA of 1H NMR spectral profiles of metabolites for the urine samples for rat, mouse and human healthy and diabetic models. Each data point
represents a sample. The total variation explained by PCs 1, 2 and 3 is 50.7%. The dispersion matrix is calculated using covariance. Ellipses represent two
standard deviation from the centroid for each cell line group. B. Hierarchical clustering result for the 270 urine samples. The clustering was performed
using Euclidian distance calculation. Colour version of the figure is available as Supplementary Material on MRC Web site. Coding is given in the legend.

Figure 4. K-means clustering of (A) 1H NMR spectral profiles of metabolites for the replicates of five cell lines clustered into five clusters and (B) 1H NMR
spectral profiles of metabolites for the urine samples for rat, mouse and human healthy control and diabetes models clustered into six clusters. The
clusters were calculated using absolute value distance matrix.

observed by PCA of membership values (Fig. 5(B)), i.e. by PCA of

the output of F-KM analysis. PCA scores plot of membership values

provides clear and easy visualisation of the clustering results. This

visual presentation shows clear separation between different cell

lines while indicating similarity between the two invasive cancer

cell lines (shown in red and blue). PCA in this context shows

global membership trend for each sample. Samples that are close

together in Fig. 5(B) have similar membership values and are thus

similarly clustered according to F-KM; samples that are far apart in

the PCA plot are dissimilar across all groups.

In the type 2 diabetes dataset, the top membership values

clearly separate samples from three species and also the subtypes

of rat and mouse samples. Human samples are co-clustered on

the basis of the top membership only (Fig. 6(A)). Closer inspection

of second membership values shows similarities within rat and

mouse samples of two subtypes and also shows differences in

some samples between two subtypes of human subjects. The

PCA representation of membership data (Fig. 6(B)), i.e. PCA of the

output of F-KM analysis of type II diabetes data clearly shows this

result. The between species separation as well as separation of

rat and mouse subtypes is apparent and there is some separation

between two human subject subgroups.

Discussion

Several different unsupervised data analysis methods were com-

pared. Methods included visualisation algorithm PCA, crisp cluster-

ing HCL and K-means as well as fuzzy clustering method F-KM. All

these different algorithms were tested on two metabolomics data

sets. First dataset was measured as part of this work and included

1D 1H NMR measurements of lipophilic extracts of replicates of

five different breast cell lines. The second previously published

dataset included NMR spectra of urine samples of three different

species – mouse, rat and human – with healthy and diabetic-like
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Table 3. Jaccard and Rand coefficients for clustering for breast cancer
cell lines (absolute value distance measure; five clusters)

Breast cell lines clustering result

K-means
Fuzzy K-means (m = 2) – top

memberships

Rand 0.757246 0.807971

Jaccard 0.247191 0.311688

Type 2 diabetes dataset

K-means
Fuzzy K-means (m = 2) – top

memberships

Rand 0.846785 0.91962

Jaccard 0.53749 0.645322

The perfect classification result has both indices equal to 1.

phenotypes for each species with a total of 270 samples. The

appraisal of clustering methods was performed by using the di-

rect comparison of results and also by using two cluster quality

coefficients.

Classical methods PCA and HCL of NMR of cell lines provided

good separation of normal and cancer cell lines (Fig. 2) as well as

separation of three species studied in the diabetes dataset (Fig. 3).

However, in the cell line dataset, PCA did not give any indication of

subtypes, i.e. tumour invasive and non-invasive cell lines (Fig. 2(A)).

In the type II diabetes dataset, PCA analysis leads to excellent

separation of three species, good separation of different mouse

phenotypes and very poor separation of rat and human subjects

(Fig. 3(A)). PCA and related visualisation methods focus on the

major trends in the data and do not take into consideration overall

changes in profiles. The PCA shows that observing only major

trends cannot provide an accurate determination of subtypes

and, although the PCA method provides a highly pictorial

representation of the data, it does not lead to optimal sample

classification. In other words, major changes in metabolic profiles

are indicative of major phenotypes such as cancer or normal cell

lines or different animal species. However, analysis methods must

consider more subtle changes in metabolic profiles in order to

determine sub-phenotypes of samples.

The HCL method provides clusters represented as dendograms

without the need for user-defined number of clusters. However,

the HCL method resulted in relatively poor sample separation in

the cases studied here. In the cell lines datasets, HCL provided

a good separation of normal cell lines for most replicates but

this method co-clustered MCF7 and MB468 cell lines as well as

MB231 and MCF12A at the same dendrogram level (Fig. 2(B)). In

the analysis of type II diabetes dataset, HCL provided a result that

was similar to that provided by PCA (Fig. 3(B)), i.e. HCL separated

samples from the three species well, leading to good separation

of samples from two groups of mice, fairly good separation of

rat phenotypes and poor separation of human subjects. K-means

algorithm is a standard, crisp clustering method with user-defined

number of clusters. In the cases studied here, the number of

clusters was known and therefore K-means method appeared to

be a good approach. However, K-means gave a very poor result

relative to known classes for cell line samples (Fig. 4(A)). For type II

diabetes dataset, K-means clustering led to good separation into

three species, but any separation of within-species phenotypes

was only possible for the mouse model, and, even in this case,

there were some very pronounced miss-classifications (Fig. 4(B)).

Finally, for the breast cell lines dataset, the F-KM clearly shows

distinct metabolic profiles for all five cell lines (Fig. (5)). The

membership values of each sample to all clusters (Fig. 5(A)) show

that even the analysis of only the top memberships allows clear

separation of MCF10A, MCF12A and MCF7 cell lines. MB231 and

MB468 are co-clustered on the basis of the top membership values

but are clearly distinguishable from the second membership

values. This result shows that MB231 and MB468 cell lines are

more similar to one another than to the other cell lines but using

F-KM it is still clearly possible to distinguish between these two

types. The PCA representation of membership values (Fig. 5(B))

shows this result pictorially. It should be noted that cell lines were

grown under optimal conditions with one set of conditions (i.e.

media) being used for MCF12A and MCF10A; second media for

MB231 and MB468 and third media for MCF7 cell lines. Although

these are standard conditions regularly utilised for the comparison

of different cell lines, they can influence final metabolic profiles.

However, it is clear that other differences in the profiles dominate

the classification as the cell lines that are grown under the same

conditions such as MCF12A and MCF10A are separated into two

Figure 5. Membership values for each sample determined by fuzzy K-means clustering of samples from breast cell line NMR spectra. Higher membership
values represent stronger allegiance to a given cluster. The cell lines studied are normal (MCF10A and MCF12A); invasive cancers (MB231 and MB468)
and non-invasive cancer (MCF7). (A) Exact membership values for each sample across all 5 clusters; (B) PCA analysis of membership values showing major
trends in the clusters.
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Figure 6. Membership values for each sample determined by fuzzy K-means clustering of samples from type 2 diabetes dataset. Higher membership
values represent stronger allegiance to a given cluster. The dataset included human control (HC), human diabetes patients (HD, mouse wildtype (MC) and
db/db mice (MD), obese Zucker rats (RF) and lean Zucker rats (RL). (A) Exact membership values for each sample across all six clusters; (B) PCA analysis of
membership values showing major trends in the cluster results.

distinguishable clusters using all of the tested methods. These five

cell lines were used in this work for the comparison of different

analysis methods and thus it is not our intention to make any

conclusions regarding the biology of these cell lines based on this

experiment. Regardless, this work does provide a proof of concept

and validation of the clustering method, which can now be applied

to cell lines or tissues grown under more appropriate conditions

for direct biological comparison.

Similar results in terms of the ability of different analysis

methods to separate different sample phenotypes was observed

in the second, type 2 diabetes dataset. The problem in this

dataset is that the NMR measurements were performed under

different conditions for the three species studied. Therefore,

the phenotypical differences within species are not equally

pronounced in the three groups. F-KM analysis resulted in an

improved clustering based on both the Jaccard and Rand index

values (Table 2) as well as the analysis of membership values. From

the top membership values (Fig. 6(A)), it was possible to clearly

separate phenotypes in mouse and rat and this was also observed

from the PCA plots of membership values (Fig. 6(B)). Differences

between human subjects are less clear and the two groups are

co-clustered on the basis of the top membership classification.

However, closer inspection of second and third membership

values shows separation between two human subject groups
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that can be observed in the PCA representation of membership

values.

For both datasets, F-KM classification based on the top

membership values resulted in better quality of clustering results

based on both Jaccard and Rand indices when compared with

the K-means method (Table 2). F-KM membership values also

provided additional data regarding sample sub-phenotypes. From

the analysis of fuzzy membership values, it was possible to

separate major phenotype differences as well as minor phenotype

subgroups in both datasets tested. For breast cell lines, it was

established that differences can be observed between cancer

and normal as well as invasive and non-invasive cancer cell lines.

In the type II diabetes dataset, fuzzy membership values allow

clear separation of three species, as well as two phenotypes in

mouse and rat models. For human type II diabetes and healthy

phenotypes, membership values lead to better sample separation

than other methods; however, even with the F-KM method, it

is rather difficult to make clear separation of these phenotypes.

This result indicates that other environmental or clinical influences

(such as age, body mass index, etc.) can create problems for human

subject classification regardless of the method used. Further work

will focus on the exploration of different pre-processing methods

in conjunction with fuzzy classification.

Conclusions

In conclusion, we report the application of the fuzzy clustering

method in the analysis of metabolomic data. From the analysis of

fuzzy membership values, it was possible to separate samples

based on major phenotypical differences as well as minor

phenotype subgroups. The F-KM method resulted in the best,

most accurate classification based on sample class labels of all the

methods tested and provided additional information that led to

sub-phenotype classification.

From these results, it is clear that the analysis method of

choice for metabolomics data must include complete spectra

in the sample classification calculations and should be able to

provide information about both major as well as minor cluster

memberships for all samples. The F-KM method follows these

requirements and allows more accurate sample classification when

compared with standard methods.
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