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Data and Knowledge Visualization with Virtual Reality Spaces,

Neural Networks and Rough Sets: Application to Geophysical

Prospecting

Julio J. Valdés, Enrique Romero and Ruben González

Abstract— Visual data mining with virtual reality spaces are
used for the representation of data and symbolic knowledge.
The approach is illustrated with data from a geophysical
prospecting case in which partially defined fuzzy classes are
present. In order to understand the structure of both the
data and knowledge extracted in the form of production
rules, structure-preserving and maximally discriminative vir-
tual spaces are constructed. High quality visual representations
can be obtained using Samman and Nonlinear Discriminant
neural networks. Rough set techniques are used for demonstrat-
ing the irreducibility of the set of original attributes and for
learning the symbolic knowledge. Grid computing techniques
are used for constructing sets of virtual reality spaces and
for assessing the behavior of some of the neural network
parameters controlling the quality of the virtual worlds. The
general properties of the symbolic knowledge can be found
with greater ease in the virtual reality space whereas both the
prediction of unknown objects to the target class, as well as
a derivation of a fuzzy membership function from the virtual
reality space and the neural network results are obtained.

I. INTRODUCTION

Knowledge discovery is the non-trivial process of iden-

tifying valid, novel, potentially useful, and ultimately un-

derstandable patterns in data [4], and the role of visual-

ization techniques in the knowledge discovery process is

well known. There are different kinds of data (relational,

graphical, symbolic, etc.), and there are also patterns of

different kinds (geometrical, logical, behavioral, etc.). The

increasing rates of data generation require the development

of procedures facilitating the understanding of the internal

structure of data more rapidly and intuitively. The increasing

complexity of the data analysis procedures makes it more

difficult for the user, to extract useful information out of the

results from the various techniques applied. However, the

human brain still outperforms the computer in understand-

ing complex geometric patterns, thus making the graphical

representation of complex and abstract information directly

appealing. A virtual reality (VR) technique for visual data

mining on heterogeneous, imprecise and incomplete infor-

mation systems was introduced in [14], [16]. Several reasons
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make VR a suitable paradigm for visual data mining: dif-

ferent representation models according to human perception

preferences can be chosen, it allows immersion, it creates

a living experience, and the user may see the world as a

whole or concentrate on specific details. For using VR the

user needs no mathematical knowledge and no special skills.

The purpose of this paper is to explore the construction

of high quality VR spaces for visual data mining using a

combination of neural networks and rough sets techniques

with the purpose of representing both data and symbolic

knowledge. In particular, the Samman and Nonlinear Dis-

criminant (NDA) networks are used for unsupervised and su-

pervised mapping to low-dimensional feature spaces. Rough

sets methods are applied for evaluating the information

content of the original descriptor variables and for the

extraction of symbolic rules from the data. Both the data and

the symbolic knowledge are transformed into corresponding

virtual reality spaces where their structure and properties can

be visually inspected and quickly understood. This approach

is illustrated with a case of geophysical prospecting for

underground caves involving partially defined fuzzy classes.

Since the classes are partially defined, a combination of

unsupervised and supervised approaches is required.

II. VIRTUAL REALITY SPACES FOR VISUAL DATA

MINING

Information systems were introduced in [10]. They have

the form S = 〈U,A〉 where U is the universe and A the set

of attributes, such that each a ∈ A has a domain Va and

an evaluation function fa. In general the Va are not required

to be finite. More generally, heterogeneous and incomplete

information systems should be considered [15].

A virtual reality space for the visual representation

of information systems [14], [16], is defined as Υ =
〈O,G, B,ℜm, go, l, gr, b, r〉. O is a relational structure com-

posed by objects and relations (O = 〈O, Γv〉 , Γv =
〈γv

1 , . . . , γv
q 〉, q ∈ N+ and the o ∈ O are objects), G is

a non-empty set of geometries representing the different

objects and relations. B is a non-empty set of behaviors

(i.e. ways in which the objects from the virtual world will

express themselves: movement, response to stimulus, etc. ).

ℜm ⊂ Rm is a metric space of dimension m (the actual

virtual reality geometric space). The other elements are

mappings: go : O → G, l : O → ℜm, gr : Γv → G,

b : O → B, r is a collection of characteristic functions for

selecting which of the original relations will be represented



in the virtual world. The representation of an information

system Ŝ in a virtual world requires the specification of

several sets and a collection of extra mappings: Ŝv =
〈O, Av, Γv〉, O in Υ, which can be done in many ways. A

desideratum for Ŝv is to keep as many properties from Ŝ
as possible. Thus, a requirement is that U and O are in

one-to-one correspondence (with a mapping ξ : U → O).

The structural link is given by a mapping f : Ĥn → ℜm.

If u = 〈fa1
(u), . . . , fan

(u)〉 and ξ(u) = o, then l(o) =
f(ξ(〈fa1

(u), . . . , fan
(u)〉)) = 〈fav

1
(o), . . . , fav

m
(o)〉 (fav

i
are

the evaluation functions of Av).

III. NEURAL NETWORKS IN THE CONSTRUCTION OF

THE VIRTUAL REALITY SPACE

The typical desiderata for the visual representation of

data and knowledge can be formulated in terms of mini-

mizing information loss, maximizing structure preservation,

maximizing class separability, or their combination, which

leads to single or multi-objective optimization problems. In

many cases, these concepts can be expressed deterministi-

cally using continuous functions with well defined partial

derivatives. This is the realm of classical optimization where

there is a plethora of methods with well known properties.

In the case of heterogeneous information the situation is

more complex and other techniques are required. Hybrid

approaches combining evolutionary computation methods,

simulated annealing, neural networks and classical optimiza-

tion techniques like Powell, Fletcher-Reeves and others, are

described elsewhere [17] [18].

In the unsupervised case it is natural to require that

Γv ⊆ Γ, thus having a virtual world portraying selected

relations from the information system. The function f can be

constructed as to maximize some metric/non-metric structure

preservation criteria as is typical in multidimensional scaling

[3], or minimize some error measure of information loss [12],

[9]. A typical error measure is:

Sammonerror = 1∑
i<j

δij

∑
i<j

(δij−ζij)
2

δij (1)

where δij is a dissimilarity measure between any two objects

i, j in the original space, and ζivjv is another dissimilarity

measure defined on objects iv, jv of the virtual reality space

(the images of i, j under f ). In principle, the f mappings

obtained using approaches of this kind are implicit because

the images of the objects in the new space are computed

directly. However, a functional representation can be obtained

with a neural network (e.g. the Samman network). This is a

feedforward network and its architecture consists of an input

layer with as many neurons as descriptor attributes, an output

layer with as many neurons as the dimension of the target

space and one or more hidden layers. In the supervised case,

a natural choice for representing the f mapping is an NDA

neural network [19], [8], [9], [7]. The NDA network is also

feedforward with the same input layer, but with an output

layer with as many neurons as classes contain the decision

attribute, a last hidden layer (there might be several) with

a number of neurons equal to the dimension of the target

space and optionally other hidden layers. The classical way

of training these networks is described in [9], [8], [7].

IV. SYMBOLIC KNOWLEDGE VIA ROUGH SETS

The Rough Set Theory [10] bears on the assumption that

in order to define a set, some knowledge about the elements

of the data set is needed, in contrast to the classical approach

where a set is uniquely defined by its elements. In the Rough

Set Theory, some elements may be indiscernible from the

point of view of the available information and knowledge is

understood to be the ability of characterizing all classes of

the classification.

A decision table is any information system of the form S =
〈U,A〉 where A = A′ ∪ {d}, A′ are the condition attributes

and d is the decision attribute. The lower approximation of

a concept consists of all objects, which surely belong to

the concept, whereas the upper approximation consists of all

objects, which possibly belong to the concept. For any B ⊆
A an equivalence relation IND(B) defined as IND(B) =
{(x, x

′

) ∈ U2|∀a ∈ B, fa(x) = fa(x
′

)}, is associated.

A reduct is a minimal set of attributes B ⊆ A such that

IND(B) = IND(A) (i.e. a minimal attribute subset that

preserves the partitioning of the universe). The set of all

reducts of an information system S is denoted RED(A)
(reduct computation is NP-hard, and several heuristics have

been proposed [20]). Reduction of knowledge consists of

removing superfluous partitions such that the set of ele-

mentary categories in the information system is preserved,

in particular, w.r.t. those categories induced by the decision

attribute. In particular, minimum reducts (those with a small

number of attributes), are extremely important, as decision

rules can be constructed from them [2]. The algorithms for

computing reducts and rules used in this paper are those of

the Rosetta system [11].

V. GRID AND DISTRIBUTED COMPUTING

Distributed and Grid computing (DGC) involves coor-

dinating and sharing computing, application, data, storage,

or network resources across dynamic and geographically

dispersed organizations. The use of grid technologies is

an obvious choice for many data mining tasks within the

knowledge discovery process. In this paper DGC was used

for exploring the behavior of the samman and nda neural

networks with respect to variations in some of the controlling

parameters, thus enabling the discovery of best-behaving

models.

Condor (http://www.cs.wisc.edu/condor/) is

a specialized workload management system for compute-

intensive jobs in a distributed computing environment, de-

veloped at the University of Wisconsin-Madison (UW-

Madison). It provides a job queuing mechanism, scheduling

policy, priority scheme, resource monitoring, and resource

management. All of the experiments in this paper were

conducted on two Condor pools located at the Institute for

Information Technology, National Research Council Canada

and the Polytechnic University of Catalonia, respectively.



VI. A CASE IN GEOPHYSICAL PROSPECTING

Cave detection is a very important problem in civil and

geological engineering. Sometimes the caves are opened to

the surface, but typically they are buried and geophysical

methods are required for detecting them. The task is usually

complex. The studied area contained an accessible cave

and geophysical methods complemented with a topographic

survey were used with the purpose of finding their relation

with subsurface phenomena [13]. This is a problem with

partially defined classes: the existence of a cave beneath a

measurement station is either known for sure or unknown

(i.e. only one class membership is really defined).

The set of geophysical methods included 1) the sponta-

neous electric potential (SPdry) at the earth’s surface in the

dry season, 2) the vertical component of the electro- magnetic

field in the VLF region of the spectrum, 3) the spontaneous

electric potential in the rainy season (SPdry), 4) the gamma

ray intensity (Rad) and 5) the local topography (Alt). The

raw data consist of these 5 fields (the attributes) on a spatial

grid containing 1225 measurement stations (the data objects).

In order to eliminate the data distortion introduced by the

different units of measure and to reduce the influence of noise

and regional geological structures, a data preprocessing pro-

cess was performed consisting of: i) conversion of each phys-

ical field to standard scores. ii) model each physical field f as

composed of a trend, a signal and additive noise: f(x, y) =
t(x, y) + s(x, y) + n(x, y) where t is the trend, s is the

signal, and n is the noise component. iii) fit a least squares

2-D linear trend t̂(x, y) = c0 + c1x + c2y and obtain the

residual: r̂(x, y) = f(x, y)−t̂(x, y). iv) convolve the residual

with a low pass 2-D filter to attenuate the noise component:

ŝ(x, y) =
∑N

k1=−N

∑N
k2=−N h(k1, k2)r̂(x − k1, y − k2),

where ŝ(x, y) is the signal approximation, and h(k1, k2) is

the low-pass zero-phase shift digital filter. v) recompute the

standard scores and add a class attribute indicating whether

there is a known cave below the corresponding measurement

station or if its presence is unknown. The pre-processed data

set will be called prp-data. This is not the typical two-

classes presence/absence problem because only one class is

known with certainty. Since the classes are partially defined,

a combination of unsupervised and supervised approaches is

required.

VII. RESULTS

The prp-data set was discretized using the boolean rea-

soning algorithm and the reducts were found by Johnson’s

algorithm [11]. A single reduct was found, consisting of all

of the 5 original variables, proving that no proper subset of

these variables exactly preserves the discernibility relation of

the original data. That is, no lower dimensional space based

on the power set of the original variables is discernibility-

preserving. Thus, lower dimensional spaces based on non-

linear combinations are to be sought. A collection of exper-

iments was conducted on a Condor distributed computing

environment in order to asses the effect of some of the

neural network controlling parameters and to select adequate

models for the visualization. The activation functions used

were sinusoidal for the first hidden layer and hyperbolic

tangent for the rest. The error measures that the network

learning targeted were mean squared error and classification

rate for the NDA network and Sammon error for the Samman

network. A collection of models was obtained by varying

some of the network controlling parameters (Table I), for a

total of 1260 for the NDA and 324 for the Samman networks

respectively.

A. Spaces maximizing structure preservation

From an unsupervised perspective, a Samman network was

used mapping the original prp-data 5-dimensional space to

a 3-D VR-space. The distribution of the Sammon error is

shown in Figure1. It is skewed towards the smaller errors

Fig. 1. Left: Distribution of the Samman stress (324 experiments) using
Samman networks. Right: Distribution of the classification error of the cave
class (1260 experiments) using NDA networks.

end (good behavior), with a mean of 0.0229 and a standard

deviation of 0.00133 indicating that error values fluctuate

within a narrow range.

Clearly, it is impossible to represent a virtual reality space

on printed media (navigation, interaction, and world changes

are all lost). Therefore, only snapshots can be presented.

For simplicity, in all of the VR-spaces presented G =
{dark spheres, light spheres}, B = {static} and the

l function is based on the representation of f given by a

Samman network. r is a single characteristic function for

the relation C with the equivalent classes {cave, unknown}
such that objects of the cave class will be represented as dark

spheres and those of the unknown class by light ones.

As an illustration, the VR-space corresponding to experi-

ment 135 is shown in Figure 2. The low value of the Sammon

error indicates that the space preserved most of the distance

structure of the data, therefore, giving a good idea about

the distribution in the original space. The space is clearly

polarized with two distribution modes: one at the left hand

side composed exclusively of cave objects, and another at

the right hand side composed only of unknown objects.

Since the distance between any two objects is an indication

of their dissimilarity, objects of the unknown class closer

to objects of the cave class are more likely to correspond

to measurement stations having underground cavities than

objects further away. In particular, those objects of the

unknown class contained within the convex hull defined by

the objects of the cave class are very interesting. It is also



TABLE I

PARAMETERS USED FOR THE NDA AND SAMMAN NETWORKS.

Parameters NDA Samman

No. Neurons in the First Hidden Layer {20,30,40,50,60} {20,30,40}
Weights Range in the First Hidden Layer {0.1,0.5,1,3,5,7,9} {15,10,5}

Learning Rates in Every Layer 0.001,0.001,0.001 {(3.0,1.5),(2.0,1.0),(1.0,0.5)}
Momentum {0.1,0.2,0.3} {0.0,0.1,0.2}

Number of Iterations {1000,2000,3000} 200

Random Seed Four different values Four different values

Fig. 2. VR-space of the prp-data set corresponding to experiment 135
(Sammon error = 0.0208). Objects of the cave class are dark. Objects of
the unknown class are light (this is for comparison purposes only, since
the mapping generating the space is unsupervised). Transparent membranes
wrap the corresponding classes.

evident that only a smaller proportion of the objects of the

unknown class are either contained, or close to the convex

hull of the cave class, as expected from the typical lognormal-

like distribution of many geological features.
A hierarchical clustering using Euclidean distance and

Ward’s method [1] (Figure 3) clearly reveal the existence

of two well defined clusters. Their nature is explained by

the 2x2 contingency table defined by the membership with

respect to the cave/unknown classes vs. those corresponding

to the two clusters emerging from the dendrogram. The

table has a highly significant χ2 value (165.872), indicating

the high degree of association between the existing classes

(specially the cave class) and the formed clusters. Cluster 2
corresponds to the cave class containing 120 of the 121 cave

objects and 419 unknown objects (likely candidates to belong

to the cave class). Clearly, those in cluster 1 correspond to

locations less likely to have underground cavities beneath.

Cluster 1 Cluster 2 Total
unknown 685 419 1104

cave 1 120 121

1) Visualization of Symbolic Knowledge : As explained in

section IV, symbolic knowledge in the form of production

rules was extracted from the prp-data set using rough set

Fig. 3. Dendrogram of the objects in the VR-space of Figure 2 (Ward’s
method using Euclidean distance).

techniques. Structure preserving VR-spaces representing an

information system with rules as objects can be constructed

by minimizing Sammon’s error (1). In this case the dissim-

ilarity measure used for the original attributes was δij =
(1 − ŝij)/ŝij , where ŝij is Gower’s similarity coefficient

[5]. The Euclidean distance was the measure used for ζij

in the VR space. A set of 345 rules were generated and

two representative examples including the number of objects

covered are:

SPdry([−0.16981, ∗)) & V LF ([−0.75462, ∗)) &
SPrain([0.48744, ∗)) & Rad([−0.21015, ∗)) &
Alt([0.00346, ∗)) =⇒ class = unknown (123 objects)

SPdry([∗,−1.50209)) & V LF ([∗,−1.14882)) &
SPrain([∗,−0.46789)) & Rad([∗,−1.54413)) &
Alt([∗,−1.22398)) =⇒ class = cave (6 objects)

The approach described in [14] [16] for the construction

of VR-spaces representing symbolic knowledge in the form

of production rules was applied and the corresponding space

is shown in Figure 4 (Left). When compared with Figure 2

it is clear that the structures of the knowledge base and the

data are very similar. An even clearer distribution is obtained

if the rule base is pre-processed with the Leader clustering

algorithm [6] in order to select representatives for subsets of

similar rules and work with a smaller information system.

Such a space is shown in Figure 4 (Right) where the

relative size of an object at a particular location in the



Fig. 4. Left: VR-space with a representation of the 345 rules. Right: VR-space with the 231 most representative rules (sizes are proportional to the
amount of similar rules at a given location). Dark objects: rules concluding about the cave class. Light objects: rules concluding about the unknown class.

VR-space is proportional to the number of similar rules

within its neigborhood (therefore, of data concentration in

the original feature space). This allows an easy identification

of the most general rules from the more specific ones and

also of knowledge granules. From the point of view of

the distribution of the most important objects, the space is

strongly polarized, allowing the identification of the rules

describing the properties of the physical fields more accu-

rately identifying the presence of underground caves and

also the properties of the fields characterizing the areas most

likely composed of solid rock. At the same time it allows the

identification of the knowledge related with those objects of

undetermined nature (i.e. from the undefined class).

B. Spaces maximizing class discrimination

In a supervised situation, the information available from

the decision attribute is used for constructing a space

where objects belonging to different classes are maximally

differentiated. NDA networks are used for that purpose.

However, a structure preserving space is not necessarily

class-discriminating and conversely. The distribution of the

classification error for the cave class is shown in Figure 1

(Right) (the only determined class in the problem). The

distribution exhibits a skewed-multimodal characteristic with

the important modes shifted towards smaller error values

(a good feature). Several networks have 0% classification

error for the cave class and a representative of them is the

one found in experiment 174. A VR-space was built from

a composition of the mapping function (ϕ) represented by

that network, with a principal components transformation (P)

given by f = (ϕ ◦ P) (Figure 5).

The intrinsic dimensionality of this space is very close

to one, and its shape indicates an almost linear continuum

within and between the two classes. Conceptually, the objects

at the two extremes represent the maximum expression of a

cavehood property, and its opposite, the maximum expression

of being solid rock, in geological terms. In between there is a

gradation of the cavehood property, which is actually a fuzzy

concept. Let om ∈ O be the object of the VR-space satisfying

the property ((ϕ ◦ P)(om))pc1
≤ ((ϕ ◦ P)(o))pc1

for all

o ∈ O and let oM be the object such that d(om, oM ) >=
d(om, o) for all o ∈ O, o 6= om where d is the Euclidean

distance and pc1 is the first principal component. Then, a two

dimensional membership function µc ∈ [0, 1] for caveness

can be constructed as µc(o) = (1 − (d(om, o)/d(om, oM ))).
Note that although a supervised approach was used, this

formulation is based only on the information about the known

class. This approach can be extended to multiclass problems

with partially defined classes. The distribution of µ within

the investigated area is shown in Figure 6
The behavior of µ depicts a very consistent and realistic

geological pattern, where not only the known cave is cor-

rectly flagged with maximal membership values, but also

defines a collection of hallos around the known cave with

progressively decreasing values. In addition, other smaller

areas with medium to high values are indicated, suggest-

ing locations where other underground cavities could be

expected. In particular, a borehole drilled at a location within

the white circle of Figure 6 (Left) actually hit a cavity.

VIII. CONCLUSIONS

A combination of neural networks and rough set tech-

niques was used for constructing virtual reality spaces for vi-

sual data mining suitable for representing data and symbolic

knowledge. Good neural network models were found with

the use of distributed computing techniques, which when

used as space mapping functions produce high quality VR-

spaces where the properties of data and symbolic knowledge

can be revealed. Problems with partially defined classes can

be approached successfully by combining unsupervised and

supervised techniques. A method for constructing member-

ship functions in problems with partially defined classes

is proposed which can be used as a forecasting tool, as

illustrated with an example from geophysical prospecting.



Fig. 5. VR-space maximizing class separability for the 1225 objects according to the (ϕ ◦ P) function. The classification error of the cave class is 0.

Fig. 6. Left: Fuzzy membership function µc of the cave class computed from the VR-space obtained from the NDA network (Extreme values: white=1,
black=0). Right: Map of the known cave. The white circle indicates the area where a borehole hit a cavity, not opened to the surface.
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