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Abstract. The concept of relative sensitivity factors required for the correction
of the measured ion beam ratios in pin-cell Glow Discharge Mass Spectrometry
(GD-MS) is examined in detail. We propose a data-driven model for predicting
relative response factors which relies on nonlinear least squares adjustment
and analyte/matrix interchangeability phenomena. The model provides a self-
consistent set of response factors for any analyte/matrix combination of any
element that appears as either analyte or matrix in at least one known response
factor.
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Relative sensitivity factors in GD-MS 2

1. Introduction

Glow discharge mass spectrometry (GD-MS) is one of
the most comprehensive and sensitive techniques cur-
rently available for determination of the composition
of solid materials [1, 2]. As a combined tandem source
[3], separation of the sputtering (sampling) and ioniza-
tion processes in the GD provides response that is, to
a first approximation, independent of sample matrix
[4–6]. It is thus well-recognized that pin-cell GD-MS
is relatively free of matrix effects, i.e., the slope of a
calibration plot of amount content of an isotope of an
impurity element present in different host matrices ver-
sus its detected ion beam intensity typically varies by
no more than 30 to 100 % [5, 7]. The implications of
this have recently been discussed with regard to uti-
lization of GD-MS for establishment of the purity and
traceability of high purity metals [8].

Mass fractions for each impurity element are
directly derived from ion beam ratio data (i.e., the ion
beam currents generated at the detectors for impurity
isotope and the matrix isotope) corrected for small
reproducible variations in sensitivities among different
elements through application of relative sensitivity
factors [2, 5].

The relative sensitivity factor for determination of
element E (impurity) in host matrix of metal M and
herein denoted with symbol s(E,M), is the reciprocal
slope of a virtual calibration function, based on the
assumption of linearity with zero intercept and is
defined as:

s(E,M) =
w(E)

w(M)
· I(M)

I(E)
(1)

where I(E) and I(M) are the (corrected) ion beam
intensities generated for the element E (impurity)
and the reference element M (standard), w(E) is the
mass fraction of element E in the analysed standard
material and w(M) is the mass fraction of the matrix
metal M in the analysed standard material. For
example, the relative sensitivity factor for copper in
a gold matrix is denoted s(Cu,Au). Corrections to ion
beam intensities include the relative abundances of the
measured isotopes as well as detector cross-calibration.
In most publications, authors work with high-purity
materials and assume w(M) ≈ 1. This, in turn, means
that the ratio w(E)/w(M) is approximated with w(E).

When quantitative analysis is desired, calibration
of instrument response is typically undertaken using
available Certified Reference Materials (CRMs) or,

potentially, gravimetrically spiked matrices prepared
from high-purity substrates similar in composition to
the material under study [9, 10], with which determined
s values can then be rigorously calculated and applied.
Such matrix matched approaches are readily capable of
generating bias of typically no greater than 30–100 %
relative and only require maintenance of reproducible
sample geometry and discharge conditions for both
sample and standard.

A more frequent situation entails semi-quantitative
analysis in the absence of matched standards and
in such case advantage is taken of the concept of
the interchangeability of the s values amongst ele-
ments/matrices. Here, s(E,Fe) is frequently used as
a normalization factor to derive other s(E,M) values
for a specific measurand in a different matrix in accor-
dance with the expression:

s(E,M) =
s(E,Fe)

s(M,Fe)
(2)

Normalizing the s values for GD-MS response to iron is
a historical practice that evolved due to the relatively
larger number of CRMs available for iron and steel
matrices. Thus, s values provide a set of universal
coefficients from which one s value can be converted
to the s for another elemental impurity in a different
matrix. This manuscript evaluates the limits of the
interchangeability principle underlying Eq. (2).

Theoretical modeling of s values for the VG 9000
pin-cell GD-MS instrument has been undertaken by
accounting for diffusional transport of the sputtered
atoms in the glow discharge as well as their Penning,
electron impact and asymmetric charge transfer
ionization [5, 11]. Despite the comprehensive treatment
of the subject, the best semi-empirical models can
predict the s values only to about a factor of three
(see Figure 1). Importantly, no corresponding analysis
of estimated associated uncertainties is available.

GDMS measurements are often conducted to
assess the purity of metals by measuring the levels
of all other elements present at trace levels. The
purity of the metal is then calculated as one minus the
sum of all impurity levels. For a 99.99 % pure metal
sample having typical levels of other trace elements
(impurities), as an example, each of these impurities
can be determined to a 50 % relative precision while
still providing a fit-for-purpose purity estimate of the
main element.

Page 2 of 11AUTHOR SUBMITTED MANUSCRIPT - MET-100903.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Relative sensitivity factors in GD-MS 3

A recent assessment of uncertainty derived from
the GD-MS calibration function highlighted the
overwhelming contribution arising from s values to
the estimated standard uncertainty in returned mass
fraction for every element [8]. In light of this, a
closer examination of s values is warranted and, in this
contribution, a statistical analysis of s values compiled
at NRC over the course of three decades of GD-MS
characterization of high purity metals is presented.
Herein, we propose a data-driven model for evaluating
and predicting GD-MS relative sensitivity factors
which relies on nonlinear least squares adjustment and
the redanalyte-matrix interchangeability phenomenon.
Particular attention is paid to the analysis of
uncertainty, presented with the aim of assessing the
typical global uncertainty associated with metal purity
analysis using this technique.

2. Interchangeability of response factors

It is clear from Eq. (2) that if a single “comprehen-
sive”CRM of a given matrix was available certified for
mass fractions of all elements of interest, such a unique
CRM could be used to derive s values for every el-
ement in every matrix via a multiplicative chain rela-
tionship. Such calculated values will be denoted herein
as sc(E,M). In the absence of such a universal CRM,
advantage is taken of the interchangeability relation-
ships provided by Eq. 2. The simplest of such expres-
sions is the reciprocal identity:

sc(E,M) =̇ s−1(M,E) (3)

The dotted equal sign means that the left and right
sides of the equation are not necessarily equal. The
multiplicative property of s values can be extended into
general combinatorial relationships of length l = 2:

sc(E,M) =̇ s(E,X) s(X,M) (4)

sc(E,M) =̇ s(E,X) s−1(M,X) (5)

sc(E,M) =̇ s−1(X,E) s(X,M) (6)

sc(E,M) =̇ s−1(X,E) s−1(M,X) (7)

We also consider eight combinatorial sequences of
length l = 3:

sc(E,M) =̇ s±1(E,X) s±1(X,Y) s±1(Y,M) (8)

Together, these expressions form a set of equations
that provide estimates for s values that have not
been determined directly. In this article we consider
equations (3) – (8) along with the identity expression

sc(E,M) =̇ s(E,M) (9)

For the NRC dataset containing 245 determined s
values spanning 59 elements and 16 matrices, one can

establish 3000+ combinatorial expressions (with length
l = 1 to 3). These expressions were generated using
the generalized outer product of element and matrix
lists. In programming language R, for example, one
can use outer(E,M, paste) to obtain all element/matrix
combinations from vectors E and M.

3. Experimental

3.1. Instrumentation

Measurements were performed with a VG 9000
(VG Microtrace, Windford, UK; currently supported
by Thermo Fisher Scientific) reverse Nier-Johnson
magnetic sector high-resolution mass spectrometer
fitted with a pin-source tantalum cell that is cooled
to near liquid nitrogen temperature to minimize out-
gassing as the discharge heats. Mass resolution up to
m/∆m = 10 000 is available although the instrument
is routinely operated atm/∆m = 4000 resolution (here
m is the atomic mass of the relevant ion and ∆m is the
smallest mass difference of any two ions that can be
separated, typically expressed as the width of the peak
at a 5 % height). A combination of Faraday and Daly
detector systems that are conveniently cross-calibrated
through use of argon isotopes from the discharge gas
(38Ar and 40Ar) permits impurity elements to be
quantitated at the levels of several parts in 109. In our
laboratory, the Faraday ion currents lie in the interval
from 10−14 A to 10−9 A, whereas the Daly detector is
operated between 5×10−19 A and 5×10−13 A, yielding
some ten orders of magnitude of linear range.

Following shaping of the sample to accommodate
the cryo-cooled pin cell and external chemical cleaning
of the surface, a pre-burn sputtering of the sample
is then undertaken using the GD plasma to etch the
outer surface layers of the material and achieve a
final cleaning of the surface prior to data acquisition.
This typically requires about 20 min in a 5 mA, 1.1
kV discharge in a 1–2 mL min−1 flow of high-purity
argon. During this period, the entire mass spectrum is
interrogated to ensure that steady-state response has
been achieved for each element (isotope) of interest,
indicating that all surface contamination from the
sample and the surrounding chuck holding the sample
has been removed and bulk composition of the sample
is being examined. After this step, the analytical data
are acquired. These processes typically require 60–90
min at discharge conditions of 3.5 mA and 1.1 kV.

3.2. Computations

Computations were performed using Wolfram Mathe-

matica [12] and R, a programming language and soft-
ware environment for statistical computing and graph-
ics [13]. The calculations discussed in this work have
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Relative sensitivity factors in GD-MS 4
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Figure 1. Predictive power of two notable theoretical models for relative sensitivity factors: study by (A) Vieth and
Huneke [5] and (B) Bogaerts et al [11]. In both cases, the discrepancy between the experimental and calculated s values
is significant with neither study assessing relative uncertainty.

Table 1. Main features of s(E,M) datasets analyzed in this
work.

Dataset s(E,M)
values

Elements Matrices
Time
period

NRC 245 59 16 30+ years
Ref. [5] 112 38 6 unknown

been compiled in a self-contained R code [14].
Noteworthy is that treatment of s values for

carbon, nitrogen, and oxygen have been specifically
overlooked as these elemental impurities appear to
not follow the usual pattern of matrix independence
response and, coupled with the critical shortage of
Certified Reference Materials with which to calibrate
these elements, a less than desirable initial data base
is available for these impurities [2, 7]. We also have
omitted available data for other nonmetallic elements
such as iodine, bromine, chlorine and sulfur.

The NRC dataset relies on Certified Reference
Materials for which the average relative standard
uncertainty is 10 %. In the absence of an explicit
uncertainty statement for certain relative sensitivity
factors, we have imputed this average value of 10 %
relative standard uncertainty. In addition to our own
dataset we have analysed that of Vieth and Huneke
[5]. The main features of these two datasets are
summarized in Table 1.

4. Discussion

4.1. Dependence of the relative sensitivity factors on

matrix composition

As noted above, s values derived from one (calibration)
matrix can be used for the calculation of s values
applied to the determination of elements in a different
matrix. This forms the basis for the universality
of GD-MS since the effect of sample matrix can be
addressed using a model equation and no need arises
for empirical correction factors. When the analyte
and matrix elements are interchanged, e.g., when
determining copper in silver as opposed to silver in
copper, there is a strong inverse relationship between
the corresponding s values as generalized above in Eq.
(3). Figure 2A confirms this relationship amongst
the 22 pairs of experimentally determined s values
involving 13 elements.

4.2. Generalized equations for interchanging relative

sensitivity factors

Equations (3)–(9) can be used to generate other
combinatorial relationships between the determined s
values. In this work, equations involving one, two,
and three s values are considered, although there is
no impediment to include combinatorial sequences of
higher length. The general validity of such expressions
can be shown with our data. For example, Eq.
(4) is portrayed in Figure 2B with experimentally
determined s values involving 41 elements.

With the use of these expressions, combinatorial
reconstruction of yet-unknown s values from a given
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Figure 2. Relationships between experimental values of s(E,M). Panel A shows the validity of the measurand-matrix
interchangeability Eq. (3) whereas Panel B pertains to Eq. (4). Dotted lines represent function y = x.

set of known s values can be undertaken. For example,
given two s values with one common element, s(Cu,Ag)
and s(Cu,Au), four additional s values can be obtained:
s(Ag,Cu), s(Au,Cu), s(Ag,Au), and s(Au,Ag).

The interchangeability of analyte and matrix
enables quantitation using GD-MS in the absence
of direct standards. As noted earlier, a fictitious
calibration standard certified for mass fractions of all
elements in a single matrix could be used to perform
reliable quantitation of all elements in all matrices.
Efficient use of the multiplicative interchangeability
law, however, requires more knowledge of the statistical
properties of this model, which are discussed below.

Consider a multiplicative interchangeability law
for self-canceling sequences of s. The simplest of such
sequences can be written as follows:

s(E1,E2)× s(E2,E1) = s0(E1)=̇1 (10)

Likewise, one example of a self-canceling sequence of
length l = 3 is:

s(E1,E2)× s(E2,E3)× s(E3,E1) = s0(E1)=̇1 (11)

One has to exclude the trivial sequences and therefore
E1 6= E2 6= E3 in Eqs. (10)–(11). In the absence of
measurement or model errors, such sequences should
yield the identity s0(Ei) = 1 for all elements Ei, and
this property can be used to evaluate the performance
of the multiplicative interchangeability law. For each
element, Ei, a set of calculated values, s0(Ei), can be
established and presented as a histogram. Considering
relationships involving two and three s values, a total
of 3000+ values are generated for s0(Ei) where Ei

comprises 25 elements. A histogram of these values is
shown in Figure 3 along with the results derived from
the dataset of Vieth and Huneke [5].

It is evident from Figure 3 that deviations from the
multiplicative interchangeability law are within a 95
% probability coverage interval of approximately [0.5,
2.0]. Broadly speaking, Figure 3 is in agreement with
the often-quoted “factor of two”expanded uncertainty
for s values [2, 8]. Figure 3A appears to support the
traditional use of multiplicative uncertainty statements
in GD-MS which tacitly imply lognormal distribution
of errors. In addition, the 200 % magnitude of
expanded uncertainty is in general agreement with
these results which show a factor of k95% = 2.5
and 1.8 for data in Figure 3A. In addition to the
NRC dataset, statistical analysis of the analyte/matrix
interchangeability model can be performed using
published data, such as the 1991 dataset from Vieth
and Huneke [5]. Although this dataset is considerably
smaller than the current NRC one (N = 304 with
6 matrices for Figure 3B), results similar to those
shown in Figure 3A are obtained, as illustrated with
Figure 3B, yielding a corresponding 95 % confidence
interval of [0.6, 1.8].

The appearance of skewed distributions in Fig-
ure 3 can be explained without recourse to asymmetric
probability density functions of the experimentaly de-
termined s values. Rather, skewed error profiles are a
direct consequence of large symmetric uncertainties in
s values and the fact that the variable of interest here
is a nonlinear combination of these quantities, as illus-
trated in Figure 4. As noted recently by Possolo, the
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Figure 3. Histogram of s0(Ei) values from self-canceling sequences (l = 1, 2, 3) of s from (A) NRC dataset and (B) from
dataset of Vieth and Huneke [5]. Deviations from the multiplicative interchangeability law can be visualized using self-
cancelling products or ratios of the experimentally determined values as shown in Eq. 10–11. These nonlinear combinations
of the experimentally determined sensitivity factors can be modeled using the lognormal distribution (black curves).

use of a lognormal distribution remains a convenient
alternative to approximate the ratio (or product) of
normal random variables [15].

In summary, Figure 3 illustrates that the
determined s values for a wide variety of elements and
matrices are self-consistent to within a factor of two.
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b
a
b
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ty
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e
n
s
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y,

 P
(a

b
)

A

0.0 1.0 2.0 3.0

B

0.0 1.0 2.0 3.0

Product, ab

C

A

B

C

a ~ N (2.0, 0.2
2
) > 0

a ~ N (2.0, 0.4
2
) > 0

a ~ N (2.0, 0.8
2
) > 0

b  ~ N (0.5, 0.1
2
) > 0

b  ~ N (0.5, 0.2
2
) > 0

b  ~ N (0.5, 0.3
2
) > 0

Figure 4. Product of two normally distributed random
variables gives skewed probability density distribution in
the presence of large relative uncertainties. The notation
a ∼ N(2.0, 0.22) denotes random variable a that is drawn
from a normal distribution with the mean 2.0 and standard
deviation 0.2.

This consistency, however, can be improved for many
relative sensitivity factors by performing least squares
adjustment of the experimental data.

4.3. Least squares adjustment

As evident from Figure 3, there is ample inconsistencies
between the experimentally determined s values
and those inferred from the various combinatorial
expressions such as the Eq. 10. The procedure for
reducing such inconsistencies was pioneered in the late
1920s by Birge [16]. Much like individual measurement
results in calibrations are commonly interpolated with
a line by least squares fitting, interpolation over all
experimentally determined s values can be undertaken
in order to obtain a self-consistent set of sc values. In
this work, we adopt nonlinear least-squares adjustment
of s values in line with the procedure that is employed
to obtain the consensus values for the fundamental
physical constants by CODATA [17].

In short, all experimentally determined values of
s(E,M) are recast in terms of sc(E,Fe) and sc(M,Fe)
via equation

s(E,M)=̇
sc(E,Fe)

sc(M,Fe)
(12)

The set of all sc(E,Fe) is the output vector for the
multivariate least squares fitting. The system of
nonlinear equations is linearized using Taylor series
expansion of functions in Eq. (12). Both fixed effects
and random effects models for the least squares fitting
were used.
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Figure 5. Histogram of standardized differences in the
results of a copper reference material analyses (BCR 075B;
IRMM, Belgium). The histogram combines determinations
of nine elements (Al, Bi, Cd, Co, Mn, Ni, Pb, Sb, and
Zn) all present at levels 1000–4000 ng/g. A total of 240
measurements were available for each element from data
collected over the last 15 years at NRC. Results of each
element are normalized such that their mean is 0 and
standard deviation is 1 (standardized difference).

4.4. Least squares adjustment: fixed effects model

Suppose there are M determined values qi of various
s (i = 1 . . .M). For example, q1 could be an
experimentally determined value of s(Ag,Cu). Each
input datum qi can be expressed as a function fi of
one or more of the adjusted constants zj (j = 1 . . . N)
through the set ofN observational equations (N < M).
For example, z1 could be sc(Ag,Fe) and z2 could be
sc(Cu,Fe). Then, q1=̇z1/z2. The choice of adjusted
constants is arbitrary and we have selected the set
sc(E,Fe) where E includes all analytes of the input
data. The corresponding set of functions fi is obtained
using equations (3), (5), (6), and (9). We establish the
following statistical model:

qi = fi(s) + ei (13)

where ei ∼ N(0, σ2
i ). The adequacy of normally-

distributed measurement errors is supported by the
results obtained over a period of 15 years for the
analysis of a copper quality control standard in our
laboratory (see Fig. 5).

Most of the observational equations are nonlinear
and we linearize expressions fi using first-order Taylor
series around starting values sj that are nearly equal
to the expected values of the adjusted constants zj :

qi=̇fi(s) +

M∑

j=1

∂fi(s)

∂sj
(zj − sj) (14)

In matrix notation, the least squares adjustment of the
input data, Q, provides the adjusted values, Z, via a

variance-weighted linear least squares expression

(Q− F )=̇A(Z − S) (15)

whereA is aN×M matrix with derivatives of functions
fi around sj , aij = ∂fi(s)/∂sj , and F is a vector of
values fi(s). Thus, Q and F are vectors of length N
whereas Z and S are vectors of length M . The value
of Z is obtained using the Gauss-Newton method of
least squares minimization:

Z = S + (ATW−1A)−1ATW−1(Q− F ) (16)

Here, W is a diagonal matrix containing the variances
of qi, wi,i = u2(qi). The least squares minimization
is an iterative process because nearly all combinatorial
expressions, fi, are nonlinear. Thus, the minimization
starts with an approximation that elements sj are
equal to the corresponding input values qi and
continues until the convergence criterion,

N∑

j=1

(zj − sj)
2

u2(zj)
(17)

is less than some arbitrary value, say 10−3 (in the
absence of initial estimate we take sj = 1 for all j).
This process takes typically less than five iterations.
After each iteration, vector S is updated using
expression S = Z and then A and F are recalculated
using the new values of S. The uncertainty of the
adjusted variables, u(zj), is obtained from the diagonal
elements of the covariance matrix of Z,

cov(Z) = s2e(A
TW−1A)−1 (18)

where se is the standard error of the regression and is
also known as the Birge ratio RB:

s2e = R2
B =

1

M −N
(Q− F )TW−1(Q− F ) (19)

4.5. Least squares adjustment: random effects model

Least squares adjustment presented above is a
location-scale model which recognizes that each
determined s value is perturbed only by a measurement
uncertainty. With a random effects model, the
possible inconsistencies in the data are modeled by an
additional source of uncertainty which depends on the
sample matrix (the random effect):

qi = fi(s) + ei + t(M) (20)

where ei ∼ N(0, σ2
i ) and t(M) ∼ N(0, τ2M) is the random

effect which depends on the matrix element M in the
measured quantity qi. The random effects estimate of
Z is obtained as follows:

Zr = S + (ATΩ−1A)−1ATΩ−1(Q− F ) (21)

Page 7 of 11 AUTHOR SUBMITTED MANUSCRIPT - MET-100903.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Relative sensitivity factors in GD-MS 8

Values for A and F are obtained from the fixed effects
model. The covariance matrix of Zr is given as

cov(Zr) = (ATΩ−1A)−1 (22)

The matrix Ω is identical to W but with heterogeneity
variances τ2M appropriately added to all its diagonal
elements. We estimate the values of τM using
the method of restricted maximum likelihood by
maximizing L(τM) as described by Chen et al [18]:

2L(τM) = − ln |Ω| − ln |ATΩ−1A| − rTΩ−1r (23)

where r is the vector of regression residuals,

r = (Q− F )−A(Zr − S) (24)

The overdispersion of the results of the random effects
model, RB, can be calculated as in Eq. 19 but with
W replaced by Ω. Owing to the large number of
degrees of freedom in our data set, however, we do not
further expand the adjusted values for any remaining
overdispersion (hence, Eq. 22 does not include the term
s2e). In this manner, we believe that the remaining
source of inconsistency may originate largely from the
inconsistencies amongst the various CRMs and not the
GD-MS analysis.

4.6. Performance test using Monte Carlo simulation

To test the performance of the least squares adjust-
ment, we performed Monte Carlo simulation on a small
scale test model consisting of five relative sensitivity
factors in a system of three elements: Ag, Al, and Cu,
whose values derive from hypothetical “true” values
s(Al,Ag) = 2, and s(Cu,Ag) = 5. All of these values
are perturbed with a 50 % relative uncertainty due to
the measurement and an additional uncertainty com-
ponent is added for each of the four matrices. This re-
sults in relative uncertainty of 60–100 % for each of the
five measured sensitivity factors s(Al,Ag), s(Al,Cu),
s(Ag,Cu), s(Cu,Al), and s(Cu,Ag). The resulting val-
ues for all relative sensitivity factors are modeled as
random draws from zero-truncated normal distribu-
tions.

We believe that such a Monte Carlo test
involves high relative uncertainties and therefore allows
assessment of the performance of the least squares
adjustment. The values of the five sensitivity factors
were sampled 10 000 times from the statistical model
described above and the adjusted values were obtained
in each cycle using the least squares adjustment. The
Monte Carlo simulation results are summarized in
Fig. 6 and they show acceptable performance of the
random effects model for our purposes.

Al

Al

0 1 2 3 4 5 6

Ag

0.0 0.4 0.8

Cu

0.0 0.5 1.0 1.5

Ag

0.0 0.2 0.4 0.6

1 2 3 4 5 6 7

Cu

0 5 10 15

Figure 6. Monte Carlo simulation of the random effects
least squares adjustment on a three element system. The
shaded curves represent the probability densities of the
adjusted sensitivity factors. The vertical white lines
represent the mean values and 95 % shortest coverage
intervals whereas the black lines correspond to the true
values derived from s(Al,Ag) = 2 and s(Cu,Ag) = 5). The
histogram of sc(Ag,Al) is shaded because it is not part of
the input variables.

4.7. Results of least squares adjustment

Application of the fixed effects model to the NRC
dataset produces a self-consistent set of sc values.
However, the resulting Birge ratio is RB = 5.6 for the
NRC dataset and RB = 1.8 for the dataset of Vieth and
Huneke. Both values of RB largely exceed the critical
value of RB,crit ≈ 1, thus indicating the presence of
an additional source of uncertainty. Consequently, the
random effects model was chosen to fit the data. With
the random effects model, however, we obtain RB = 1.6
for the NRC dataset which we find as an acceptable
level of unexplained heterogeneity.

Fig. 7 compares the input s values with the
corresponding random effects least squares adjusted
values of the NRC dataset. The overall agreement
between the input s(E,M) and output sc(E,M) values
is promising, especially when compared to Fig. 1. In
addition, one can see that the differences between
the adjusted and experimental values do not exhibit
asymmetric tendencies and the residuals follow a t-
distribution with a zero mean and degrees of freedom
v ≈ 2. The expanded uncertainties (k = 2) of
the residuals include zero 70 % of the time (such
underestimation of the uncertainty is to be expected
from the value of Birge ratio RB > 1). Despite
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Relative sensitivity factors in GD-MS 9

the somewhat low coverage probability, we find these
results encouraging. Indeed, it is impossible to
reconcile every discrepancy in a dataset that relies on
multiple independent CRMs which have been analyzed
over several decades and for which some inconsistencies
might well be due to inherent biases in the certified
values themselves.

The predictive power of the least squares
adjustment has already served us well. For example,
inspection of the regression residuals, Q − F̂ , showed
that most of the largest residuals were from s values
in a matrix of nickel. Subsequent inspection of the
input data for nickel revealed that they were based on
corresponding CRMs which contained only 50–60 %
nickel thus raising the need for a consideration of
modeling alloy matrices in the future.

The random effects least squares analysis of the
NRC dataset provides an overall (mean) relative
standard uncertainty of 25 % for the values of sc(E,Fe).
This summary is in agreement with the work of
Matschat et al who report average deviations from
the known values of less than 30 % for most of the
investigated analytes in spiked pressed powders [19].

4.8. Sensitivity analysis

Nonlinear least squares adjustment of the input data
(s) provides an estimate of uncertainty for each of
the adjusted values (sc). Regression diagnostics
allows identification of influential data for better
understanding of the dataset. Consider the projection
(hat) matrix which links the observed data to the
estimate of the regression parameters:

P = A(ATΩ−1A)−1ATΩ−1 (25)

Given that (Q̂− F̂ ) = P (Q− F̂ ), the matrix elements
pi,j express the degree of leverage that an observation
qi has on the corresponding fitted value fj(z). We use
Cook’s distance to measure the overall effect on the
regression estimates from the ith observation, qi [20]:

Di =
hi

1− hi

· r2i
N + 1

(26)

where ri is the standardized regression residual, ri =
(qi − q̂i)/(se

√
1− hi), and hi summarizes the leverage

of qi on all fitted values: hi =
∑N

j p2i,j . Experimental
values of qi for which the Cook’s distance D > 4/(M−
N − 1) are deemed influential data and they merit a
detailed reevaluation by the analyst [21].

4.9. Extrapolation

The advantage of the matrix interchangeability
relationship lies in its ability to reconstruct values
of sc(E,M) which are otherwise unavailable in the

experimental dataset. In addition, a concerted least
squares adjustment of all determined s(E,M) values
provides a comprehensive assessment of the reliability
of the calculated values without relying on any
individual experimental data point.

The least squares adjustment provides a set of
sc(E,Fe) along with their uncertainties. The values
of sc(E,M) are ratios of sc(E,Fe) and sc(M,Fe) where
E and M represent any element contained in the
input dataset. Hence, sc(E,M) can be viewed as a
ratio of two normal random variables from the least
squares adjustment. Given the possibly large relative
uncertainties for some of the sensitivity factors, their
ratio may take an asymmetric probability density
which is a nontrivial topic of mathematical statistics
in its own right [22, 23].

Due to the aforementioned complexities of analyt-
ical solutions for approximating normal ratio variables,
we have employed the Monte Carlo method to ob-
tain the best estimates and uncertainties for sc(E,M).
To achieve this, we draw random samples of sc(E,Fe)
from the multivariate normal distribution with N -
dimensional mean vector, Z, and N×N covariance ma-
trix, cov(Zr). Then, the full set of values for sc(E,M)
is obtained and such process is repeated many times.
We use robust measures to extract the summary statis-
tics of the obtained datasets: Tukey’s trimean for lo-
cation and the median absolute deviation (multiplied
by 1.4826) for standard uncertainty.

Moreover, the least squares adjustment procedure
provides a set of adjusted sc(E,M) values for all
possible element/matrix combinations along with
their covariances which are particularly useful when
evaluating uncertainty of a combination of these values,
for example, in assigning overall purity for a given
material.

The resulting uncertainty for a particular combi-
nation sc(E,M) depends on the number of available s
values that contain elements E and M, NE and NM. In
particular, if either E or M is present in only one mea-
sured reference material, then one cannot take advan-
tage of the analyte-matrix interchangeability property
and the resulting uncertainty for sc(E,M) is unaffected
by the least squares adjustment. This is evident from
Fig. 8 where the case at min(NE, NM) = 1 compares
well with the 95 % confidence interval seen in Fig. 3,
i.e., the expanded relative uncertainties for these sc
range from 50 % to 200 % which is in line with the
NRC’s long-held view that these values are reliable to
within a factor of two. It is evident that the relative
uncertainty of sc values decreases significantly with the
availability of multiple s values per element, which at-
tests to the utility of analyte-matrix interchangeabil-
ity property. Fig. 8 also shows that the expanded un-
certainty of NRC sc values cannot be improved below
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Figure 7. Comparison of the experimentally determined values of s(E,M) with the corresponding least squares adjusted
values of the NRC dataset, sc(E,M), using the random effects model (left panel). Residuals, sc(E,M) − s(E,M), are
shown in the right panel where the x-axis corresponds to each input data point. The length of each vertical bar represents
the expanded uncertainty (coverage factor k = 2) for each residual. This uncertainty is obtained by combining the
uncertainties of the adjusted output values and the corresponding input values for the relative sensitivity factors.
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Figure 8. Expanded relative uncertainty of sc(E,M) as a
function of the minimum number of experimental s(E,M)
values available for elements E and M (NRC dataset).

10 %, which seems to be limited by the analyte-matrix
model uncertainty.

4.10. Periodic trends

When the adjusted sc values are obtained using
theoretical means, as several authors have done in
the past, it is important to understand the origins of
such trends. Although the use of the combinatorial

interchangeability law does not require any such
knowledge, we nevertheless would like to note a
few general observations that emerge from the NRC
dataset, the implications of which are not immediately
relevant at this time.

While the relative uncertainty of individual
sc(E,Fe) values is large for some elements, one can
nevertheless observe periodic trends in the changes of
these values as a function of the atomic number of the
element E. For example, the highest sc(E,Fe) values
occur for zinc, cadmium, and mercury – all of which
are the last members of the f-block elements. Broadly
speaking, as one traverses through the periodic table
of elements, the sc values increase along the f-block
elements and then decrease along the p-block elements.

5. Conclusion

In 2011 the CCQM noted the lack of current research
programmes to develop and extend metrological
applications of established techniques for high purity
metals for measurements by glow discharge mass
spectrometry. In response to this remark, in this work
we analyse the relationships and patterns between the
measured GD-MS relative response factors. From the
existing set of 245 values covering 59 analytes in 16
matrices, we are able to obtain 3422 relative response
factors for 59 analytes in 59 matrices. The predictive
power of the analyte-matrix interchangeability model
in conjunction with the least squares adjustment has
proven useful at NRC and this approach provides a firm
footing of the uncertainty evaluation for the s values
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as it has heretofore been unavailable. Furthermore, the
proposed method enhances confidence in the measured
s values and in the calculation of sc values for
analyte-matrix combinations that are not accessible via
Certified Reference Materials used for calibration.
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