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Abstract. This paper presents a discussion of the potential of Process
Mining for the analysis of general processes involving the time varia-
tion of magnitudes given by real-valued variables. These scenarios are
common in a broad variety of domains, like natural and life sciences, en-
gineering, and many others beyond business processes, where in general
complex systems are observed and monitored using sensor data, produc-
ing time series information. Two approaches are presented to construct
event logs for such types of problems and one of them is applied to a
real world case (monitoring the F10.7 cm electromagnetic flux produced
by the Sun). The results obtained with the Fuzzy Miner and the Multi-
Objective Evolutionary Tree Miner algorithms successfully exposed the
differences in the internal structure of the F10.7 cm series between So-
lar cycles. For this application, Process Mining proved to be a valuable
tool for analyzing the rhythm of solar activity and how it is changing.
The approach introduces here is general and could be use in the analysis
of data from a broad variety of time-dependent information from many
domains.

Keywords: process mining, machine learning, graph an trace cluster-
ing, fuzzy models, evolutionary multi-objective models
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1 Introduction

Process mining (PM) is a set of techniques originally developed within the pro-
cess management domain, mainly oriented to model, analyze and optimize busi-
ness processes. It is an already well established research discipline that combines
machine learning and data mining with process modeling and analysis [2].

PM methods work with data consisting of event logs. Typically, an event
log consists of a set of instances of a process, where each instance consists of
ordered events. The event log has properties such as activity and time as well
as additional ones like resource or cost. The following is an example of an event
log.

Case ID Event ID dd-MM-yyyy:HH.mm Activity Resource Costs
1 35654423 30-12-2010:11.02 register request Pete 50
1 35654424 31-12-2010:10.06 examine thoroughly Sue 400
1 35654425 05-01-2011:15.12 check ticket Mike 100
1 35654426 06-01-2011:11.18 decide Sara 200
· · · · · · · · · · · · · · · · · ·

In particular, there are certain activities that are performed at certain times,
which are performed by certain subjects (resources). Besides these key elements,
an event log may provide additional information about the process (e.g. cost).
Thus, one of the most interesting possibilities offered by process mining is to
discover the process models from event logs, which guarantees that the discov-
ered model describes the actual behavior recorded [2], [3]. Models are suitable
representations because they allow communicating complex knowledge in a more
intuitive way [11].

Process mining has become a very useful tool for the analysis of systems of
events and has been used very successfully in domains like business, management,
health and social studies, among others. However, despite its great potential,
applications in non-business domains, like natural and life sciences, engineering
and many others are comparatively fewer [9]. PM algorithms cover a wide variety
of problems and approaches [1], [4], [8], [12], [13].

The purpose of this paper is to start filling this gap by introducing process
mining to the analysis of time series from processes in any domain producing
continuous magnitudes (e.g. sensor data). The objective is to uncover patterns
of behavior within the dynamics of a general system and to characterize the
changes associated to these patterns using process mining.

The paper is organized as follows, Section 2 presents process mining, discusses
its applications to the study of natural processes and presents approaches for
constructing process logs from time series of real-valued magnitudes. Section 3
describes two process mining techniques used in the example application (Fuzzy
Miner and the Evolutionary Multi-Objective Tree Miner). Section 4 presents
the application example (monitoring the Sun’s F10.7 cm flux) and the results
obtained with the process mining modeling, and Section 5 summarizes the paper.
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2 Process Mining

The aim of process mining is to discover, monitor and improve processes by
extracting knowledge from event logs. As described above, these are collections
of cases containing sequences of certain events. Typical scenarios described by
sequences of events are database systems, transaction logs in a trading system,
message logs, among others.

Process mining provides a set of techniques that allows the analysis of event
logs in three main directions [2]: i) discovery, ii) conformance and iii) enhance-
ment. Discovery techniques produce a process model. Conformance techniques
compare a process model with the event log of the same process. It verifies if
the process model is adjusted to the reality recorded in event logs. Enhance-
ment techniques extend or improve an existing process model by using event log
information.

The minimum requirements for process mining are that any event can be
related to both an activity and a case and that events within a case are ordered.
At the same time, events can be characterized by various attributes (timestamp,
resource or performer, activity name and other data). Different techniques use
these attributes for specific analyzes [2], [3].

The learnt model can cover different approaches: i)control-flow, which de-
scribes the order of execution of the activities within the process; ii) organiza-
tional, which discovers the actors that participate in the process and how they
are related; iii) case, which focuses on the values of the data elements to char-
acterize the process and iv) the time approach, that allows time analysis.

2.1 Extraction of process logs from time series

A time series is a sequence of values of a certain magnitude that is recorded at
specific times. If T is an index set (e.g. time), a time series is given by Y =
{Yt : t ∈ T}. In the case of real valued magnitudes, Yt ∈ R. Thus, from a
process mining perspective, where the series is seen as a process, it is necessary
to represent it as an event log and therefore, to identify the elements (cases,
activities, resources and time). This could be done in several ways. Cases will
be defined here as segments of the series of a certain length with or without
overlapping (they will be unique).

In this sense, since activities and resources are discrete entities, in time series
of continuous magnitudes where Xt ∈ R, a discretization process is required.
Change is an essential aspect in a time series and it could be seen as the activity
that the series as a process, performs at a given time. Since time series values
experience these changes, they could be seen as the entities that perform the
changes, that is, as the resources of the process.

In a simple approach, resources could be interpreted as the intensity levels
of the discretized series. If Cp = {C1, · · ·Cn}, n ∈ N+, Ci ∈ R, for all i ∈ [1, n]
with Ci < Ci+1, i ∈ [1, n) is a sequence of cut points, it induces a partition of
the range of Y into p = n− 1 categories. They could be considered as the state
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of the series at time t, Lk = {Yt ∈ (Ck, Ck+1]} and collectively, as the resources
of the process.

In this simple approach, the activity is the change experienced by a time
series value and it is defined by characterizing qualitatively and quantitatively
the difference (Yt+1 − Yt). Three classes of change are considered: I ncreasing,
Decreasing, and C onstant (no change). If min,max are functions returning the
minimum and maximum of the time series respectively, R = |max(Yt)−min(Yt)|
is the range of the time series and α ∈ (0, 1), β ∈ (0, 1) are constants, then the
activity performed by a resource at time t can be defined as is Act(Lk) = C,
iff |Yt+1 − Yt| ≤ αR. Otherwise, if (Yt+1 > Yt), Act(Lk) = Id, where d =
round(|Yt+1 − Yt|/(βR)) (round(x) returns the closest integer to x). Finally, if
(Yt+1 < Yt), Act(Lk) = Dd. The scenarios are shown in Fig 1.

Fig. 1. Simple approach for defining resources and activities in a time series.

This simple approach is the one used in the paper for illustrating the analysis
of a continuous time series (Section 4). Note that other approaches for defining an
event log from a time series are possible. For instance, resources and activities
could be defined in terms of category levels with respect to the mean of the
series Tt by creating the cutpoints Cp = {C1, · · ·Cn} covering intervals given
by a certain fraction γ of the standard deviation σ(Y ) of Y . In the same way,
constants α ∈ (0, 1), β ∈ (0, 1) for defining activity levels, could act upon σ(Y )
instead of on the range.
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3 Process Mining Techniques

3.1 Fuzzy Models

Fuzzy miner is a process discovery algorithm capable of handling unstructured
processes and numerous activities, providing a simplified process visualization
[10], [11]. The algorithm uses correlation and significance metrics to simplify the
process model and to build a graph where [11]: i) the most significant behavior
is conserved, ii) the less significant and most correlated behavior is grouped,
and iii) the less significant and less correlated behavior is not considered in the
model.

Measurements of significance and correlation are modifiable in order to get
the desired result. In this sense have been developed a set of metrics [10]: i)
unary significance, ii) binary significance, and iii) binary correlation.

The algorithm initially creates an early process model where the importance
of model nodes (i.e. event class) is determined by the unary significance and
the edges are depicted by the binary significance and correlation. Later three
transformations are applied to the model to simplify it: conflict resolution, edge
filtering and aggregation and abstraction [11].

Conflict resolution. In this first transformations the conflict relation is iden-
tified, classified and resolved. There is a conflict relation when two nodes in the
model are connected in both directions. The conflict relation can be classified
in one of the three situations: length-two-loop, exception or concurrency. For
resolving the conflict its relative significance is determined (for a more detailed
see [11]). When the relative importance of a conflict relation (A→ B) is known,
i.e. rel (A → B) and rel (B → A), is possible to resolve the conflict relation
as follows: If rel(A,B) or rel(B,A) exceed a threshold value, then it is inferred
that A and B build a length-two-loop and both relation remain in the model.
When at least one of these two values is below the threshold value, then offset
is determined ofs(A,B) = |rel(A,B)− rel(B,A)|, whether offset value exceeds
a specified ratio threshold then it is assumed that the less significant relation is
an exception and it is remove it from the process model. Otherwise, when offset
value is inferior to the specified ratio threshold, it is concluding that A and B
are concurrent and it is removed from the model.

Edge Filtering. In this transformation, each edge is evaluated by its utility
util(A,B), a weighted sum of its significance and correlation (for a more detailed
see [11]). Each incoming and outgoing edges is filtered. The edge cutoff parameter
co ∈ [0, 1] allows configuring which edges are preserved. For each node, the utility
value is normalized to [0, 1] where is assigned 1 to the strongest edge. All edges
whose normalization exceeds utility value are added to the model.

Node Aggregation and Abstraction. In this last transformation the main idea
is to preserve highly correlated clusters of less-significant nodes and take away
less-significant isolated nodes. Removing nodes is configurable on the node cutoff
parameter. Nodes whose unary significance are below parameter can either be
aggregated or abstracted.
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3.2 Evolutionary Multi-objective Pareto Process Trees

None of the standard techniques for learning process models guarantee the pro-
duction of syntactically correct models. Moreover, they do not provide insights
into the trade-offs between the different quality measures. The Evolutionary Tree
Miner algorithm (ETMd) [5], [6] is capable of learning sound process models that
balances four established quality measures: i) simplicity, ii) replay fitness, iii)
precision and iv) generalization.

Simplicity is about reducing the size of a process model by removing nodes
that do not improve or compromise behavior in order to give preference to sim-
pler, rather than complex models (Occam’s Razor principle). The replay fitness
measure quantifies the fraction of the event log supported by the process model,
the precision measure quantifies how much of the behavior described by the pro-
cess model is not observed in the event log and generalization evaluates how the
process model explains the behavior of the system, and not only the particular
event log describing the observed behavior [7].

ETMd is an implementation of a genetic programming evolutionary algo-
rithm, which evolves trees, each one representing a process model. It works by
generating an initial population with candidate solutions that are evaluated (us-
ing the aforementioned four quality measures), and processed with evolutionary
operators (selection, crossover and mutation), in cycles that produce successive
generations (with/without elitism), until a termination criterion is met (number
of generations surpassed, lack of improvement of the best solution, performance
measures exceeding a given threshold, among others). Common selection mech-
anisms are roulette-wheel and tournament selection.

In the ETMd algorithm provisos are taken to prevent bloat phenomenon, like
prioritizing smaller over larger solutions, common in genetic programming sce-
narios. The evaluation of candidate solutions is not based on weighted averages
of the individual objective functions, which suffers from several disadvantages.
Instead, a four dimensional Pareto front is maintained and updated at every
generation, ensuring a true multi-objective optimization process, that gradually
eliminates the dominated solutions in favor of the non-dominated ones.

At the end of the evolution, the user examines the resulting pairwise Pareto
fronts related to the model quality measures and makes his choice. An impor-
tant element differentiating ELM to other approaches to process mining is that
even though models are evaluated using the event log data, they are the re-
sult of a generative process involving many candidate solutions, having multiple
objectives, where the best solutions balance these objectives.

3.3 Social Networks

Process mining generally focuses on discovering and analyzing the process model
[3]. However, when the event log contains information about the resource it is
possible to construct and analyze social networks. When the event log contains
time information, it is possible to infer causal relations between activities and
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also social relations between resources [1], [4]. Different metrics allow the identi-
fication of relations between resources within the process: i) handover of work,
ii) subcontracting, iii) working together, iv) similar task, and v) reassignment.

From them, handover of work and subcontracting, are based on causality.
Their objective is to identify how work flows between resources within a process
and they were the ones used in this paper.

There is handover of work, within a process instance from resource i to re-
source j when there are two successive activities where the first is performed by
i and the second by j. When a resource j performed an activity between two ac-
tivities performed by resource i, it is said that the work was subcontracted from
i to j. In both metrics it is possible to consider direct and indirect successions
using a causality fall factor, that specifies the activity number in-between an
activity complete by i and other complete by j [1], [4].

4 Application example: The 10.7 cm Solar Radio Flux
series

The Sun structure and behavior are largely controlled by magnetic fields. The
level of magnetic activity follows an 11 (really a 22) year cycle. This rhythm
pervades the Sun and modulates physical processes taking place at different
locations throughout the Sun. The result is variations in the Sun’s energy output
and other emissions, for example, the ultraviolet emissions that heat the Earth’s
atmosphere and change the ionosphere.

Monitoring the Sun is extremely important because of the impact that it has
on Earth, ultimately affecting human activities (both on Earth and in space).
Geomagnetic storms caused by solar flares and coronal mass ejections are re-
sponsible for distorting communications, satellites, the power grid and many
other distortions with economic impact measured in millions. One of the most
useful solar activity indices is the 10.7 cm solar radio flux (F10.7), which has
been measured by the National Research Council of Canada since 1947 [15].

This index consists of measurements of the total solar radio emission at 10.7
cm wavelength (a frequency of 2800 MHz). It comprises contributions from the
solar disc plus emission from all the activity centers on it. At least three emission
mechanisms are involved. The most important are thermal free-free emission
from plasma concentrations trapped in the chromosphere and lower corona by
magnetic fields, and thermal gyroresonance, where those magnetic fields are
strong enough for the electron gyrofrequency (fg (MHz) = 2.8 B (Gauss)) to be
higher than about a third of the observing frequency.

This requirement is often met in the strong magnetic fields overlying sunspots.
The third contribution is gyrosynchrotron (non-thermal) emission, driven by
electrons accelerated by flares or other reconnection processes [16]. The main use
of this index is to reflect the changes in the general level of magnetic activity-
evolutionary changes in active structures, which have characteristic time-scales
ranging from hours to weeks. The non-thermal emissions may vary dramatically
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over seconds to hours [17]. Three flux values are distributed for each measure-
ment: the Observed Flux, which is the value as measured, the Adjusted Flux,
which is the value corrected for the annual variations in the Earth-Sun distance,
and the URSI Series-D Flux, which is 0.9 times the Adjusted Flux.

The flux data were obtained from Canadian Space Weather Centre [14]. For a
more detailed discussion of the F10.7 solar radio flux activity index, see [15]. The
F10.7 solar radio flux data used in this paper are daily local noon values of the
Adjusted Flux, smoothed using 27-point adjacent-averaging. This corresponds
to the size of the synoptic map (≈ 27 days), covering a single solar rotation.
The daily averaged and smoothed F10.7 flux for the time period from 2006 to
October 2018 is shown in Fig. 2, which includes the discretization levels used for
creating the event logs (Section 2.1), as well as the time periods corresponding
to the different solar cycles (denoted as Cxx, where xx indicates the given year).
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Fig. 2. F10.7 solar radio flux series (1947 − 2018). Top labels indicate solar cycles
[19 − 24]. Horizontal lines indicate intensity levels categorized into classes (7). Solar
cycles covered by the F10.7 series are labeled at the top.

The flux is expressed in solar flux units (1 sfu = 10−22 W m−2 Hz−1). In the
figure we can see declining phase of the solar cycle 23 and the cycle 24, which is
nearing its minimum. The flux encompass full solar cycle 23 and 24 more than
solar cycle length.

4.1 Fuzzy Models

According to these results, fuzzy models were computed for the first and last two
solar cycles contained in the F10.7 record (Cycles 19, 23 and 24). They are shown
in Fig 3 (Top row), together with the models obtained with the Evolutionary
MO techniques and the F10.7 series for comparison. Each fuzzy model is a graph
that provides a simplified process visualization and describes the precedence
relations among event classes. The yellow squares represent significant activities
and each node is labeled with the event class name and the significance value.
The edges that link nodes express their significance with thickness and darkness
proportional to the strength of the connection.
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The fuzzy models clearly reveal differences in the structure of the sub pro-
cesses associated to the cycles. Solar Cycle 19 consists of only six classes of events
while cycles 23 and 24 consist of 15 and 10 classes of events respectively, related
in a much more complex manner. Taking into account the number of classes of
events, the model for Cycle 19 seems much simpler and more balanced, i.e. with
less abrupt jumps. The model of Cycle 23 involves the largest number of event
types, related to the large number of high spikes characteristic of this cycle.

Finally, Cycle 24 involves 10 classes of events, of which those indicating little
changes appear with the highest frequency ({D1, I1, D2, I2 and D3}). This sit-
uation explains why the cycle is observed flatter than the two previous cycles.
However, there is an abrupt peak (D6) with high frequency, indicating sudden,
higher intensity variations, easily identified in the F10.7 behavior during Cycle
24.

4.2 Evolutionary Multi-objective Models

The ETMd algorithm was applied to the activities sub-logs of the F10.7 for
Cycles {19, 23, 24} with the following parameters: population size= 20, elite
count= 5, nbr. of generations= 1000, cross-over rate= 0.25, random tree creation
rate= 0.25, random node addition= 1, random node removal rate= 1, random
node mutation= 1 and useless node removal= 1. No solutions were filtered from
the Pareto front based on quality measures preset thresholds. Upon termination
for each case a trade-off solution was chosen as the one on the Pareto front,
closest to the overall optimum given by the vector < 1, 1, 1, 1 > determined by
the best values of the individual quality measures (Section 3.2).

The resulting process trees are shown in Fig 3 (left to right for Cycles
{19, 23, 24}). As with the fuzzy models, there are immediate differences in the
underlying dynamics of the sub-processes for the starting and the ending solar
cycles along the F10.7 flux record, exposed by the pareto trade-off models. How-
ever, when all quality measures are considered simultaneously, Cycle 19 exhibits
a longer sequence of elements (7), with a larger number of constant and d = 1
order increasing/decreasing changes and loops, compared to Cycles 23, 24. On
the other hand, Cycle 23 is the one with the deepest tree and with jumps which
are either small or more towards the extreme (d = {1, 3, 7}). Cycle 24 has a
simpler activity change schema and slightly shorter sequences. It is structurally
more similar to 23 than to 19, a relation that coincides with the one exhibited
by their fuzzy model counterparts. These findings provide more insight on the
changes in Sun’s behavior during the last cycles [17].

4.3 Social Networks

The social networks constructed from the F10.7 process log for solar cycles
{19, 23, 24} are shown in Fig. 4, corresponding (top to bottom) to the han-
dover of work, similar tasks and the subcontracting models respectively. Recall
that resources are the radiation intensity levels at which the different types of
changes (activities) take place.
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Fuzzy Models
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Evolutionary Multi-Objective Pareto Models
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Fig. 3. F10.7 solar radio flux series (1947 − 2018). Fuzzy and Evolutionary Multi-
Objective Pareto Models corresponding to Solar cycles 19, 23 and 24 (each row contains
networks of the same type). Left hand side: Cycle 19. Right hand side: Cycles 23 and
24.
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The handover of work analysis indicates how activities are passed from one
resource to another, and it depends on two parameters: The first one indicates
whether to consider multiple transfers within one instance. The second parameter
indicates whether to consider direct succession. In the representation, node sizes
indicate the frequency with which resources have executed activities per process
instances.

The network for Cycle 19 involves six resources, with R3 being has one with
the greatest participation. It receives work from R2, R4 and R6 and it gives
work to R2 and R4. The opposite happens with with the R1 which has less
participation with only two edges, one for giving work to R2 and other for
receiving work from R2. On the other hand, for Cycle 23, seven resources are
involved. The central nodes are R2 and R3 with 9 edges each. R2 receives work
from {R1, R3, R4, R5, R6} and it gives work to {R1, R3, R5, R6}. R3 receives
work from {R1, R3, R4, R5, R6} and it gives work to {R1, R3, R5, R6}.

The opposite happens with R5 and R7, which have less number of edges.
R5 is related to R1 and R3; while R7 is related to R2 and R4. Altogether,
the dynamics is very different from the exhibited by Cycle 19. The network of
Cycle 24, involves five resources. Node R2 is the one with the highest number of
relations. It gives work to four other nodes and also receives work from them.
R3 is the node with fewer edges, as it only relates to R2 and R4, from which it
gives and receives work. As was seen with other techniques, the structure and
behavior is more similar to Cycle 23 than to Cycle 19.

Subcontracting Social Network. This type of network provides insight about
resources performing an activity in between two other activities performed by
other resource. It depends on two parameters: the first one establishes whether to
consider multiple subcontracting relations and the second one allows the consid-
eration of indirect subcontracting relationships. Nodes sizes differs, because they
are proportional to the amount of contracting and subcontracting relationships.
These networks are also shown in Fig. 4 (Subcontracting Models). Cycle 19 has
six nodes in total. Nodes {R2, R3, R4, R5} have the same behavior (two incoming
and two outgoing edges), whereas nodes R1 and R6 have only two edges, one
incoming and one outgoing. Specifically, R1 subcontracts and is subcontracted
only by the R2 node. R6 node subcontracts and is subcontracted only by the R5

node. In contrast, Cycle 23 consist of seven nodes and with a very different struc-
ture, of which R2 is the node with the most incoming and outgoing connections.
The two incoming edges indicate that R2 has been subcontracted twice, and the
four outgoing edges indicate that R2 has subcontracted four other nodes {R1,
R3, R5, R6}. Interestingly, nodes {R5, R6} only perform subcontracted work,
whereas node R7 is only subcontracted by R3. Finally, Cycle 24 consists of five
nodes all of which have the same behavior, four incoming edges and four out-
going edges, which indicates that all are subcontracted and are subcontracted
equally. Although different, its structure is more similar to Cycle 23 than to
Cycle 19.
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Handover of Work Models
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Fig. 4. F10.7 solar radio flux series (1947−2018). Social Networks models corresponding
to Solar cycles 19, 23 and 24 (each row contains networks of the same type). Left hand
side: Cycle 19. Right hand side: Cycles 23 and 24.
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5 Conclusions

Process mining was discussed in the context of the analysis of continuous, real-
valued time-varying magnitudes like time series and the monitoring with sensor
data. They are important in a broad variety of domains, like natural and life
sciences, engineering, and many others.

Approaches were presented that describe the variations of continuous mag-
nitudes as event logs where the intensity levels of the time series are interpreted
as the resources involved and the type and magnitude of their variation are
mapped to activities. This representation allows the application of process min-
ing techniques to problems like monitoring with sensor data and other types of
time-varying phenomena.

In particular, the Fuzzy Miner (FM) and the Multi-Objective Evolutionary
Tree Miner (ETMd) process mining algorithms were applied to a time series of
the F10.7 flux index of Solar activity. These techniques successfully constructed
models for the process that exposed the differences in the internal structure of
the time series between Solar cycles, and provided a better understanding of the
changing dynamics of the physical system (the Sun). In this application Process
Mining proved to be a valuable tool for analyzing the rhythm of solar activity
and how it is changing.

The results obtained are promising and further studies should extend the
range of application domains, the dimensionality of the time series, the data
types of the variables describing the time-dependent processes, as well as com-
parison with other data mining procedures.
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