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ABSTRACT 

This paper introduces a method based on graph theory and 

operations research techniques to optimize learning path 

discovery. In this method, learning objects are considered as 

nodes and competencies as vertices of a learning graph. A first 

step consists in reducing the solution space by obtaining an 

induced subgraph H. In a second step, the search of an optimal 

learning path in H is considered as a binary integer programming 

problem which we propose to solve using an exact method based 

on the well-known branch-and-bound algorithm. The method 

detailed in the paper takes into account the prerequisite and gained 

competencies as constraints of the optimization problem by 

minimizing the total competencies needed to reach the learning 

objective. 

Keywords 

Learning path, learning object recommendation, graph theory, 
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1. INTRODUCTION 
Global Positioning System (GPS) is a Global Navigation Satellite 

System (GNSS) that is massively used by car drivers. This large 

acceptance is easily understandable by the benefits that such a 

system can offer. Car navigation systems can dynamically 

calculate an itinerary between two points taking into account, 

depending on the system, several constraints like duration, 

distance, closed roads, traffic jams, etc....Drivers can focus 

exclusively on their driving limiting risks of accidents, stress, and 

losing their way. 

To some extent, the learning path followed by a student could be 

seen as an itinerary between several learning objects [9]. In this 

context, constraints on learning objects are not distance or time 

duration to go from one learning object to the other but rather 

prerequisite and gained competencies. As a result the itinerary or 

path between learning objects is regulated by competency 

dependencies that lead a learner from an initial to a targeted 

competency state. For example, a learner with solid grounds in 

integer arithmetic (starting location) willing to learn the solving of 

systems with multiple variables (destination) should be advised to 

previously learn to solve one variable linear equations (next step 

of the itinerary).   

Over the years, educational data mining and recommendation 

technologies have proposed significant contributions to provide 

learners with adequate learning material by recommending 

educational papers [18] or internet links [10], using collaborative 

and/or content-based filtering. These approaches usually aim at 

recommending learning material satisfying an immediate interest 

rather than fitting in the learner’s sequential learning process. 

Sequential pattern [28] and process mining [19] technologies have 

also been investigated. However, these technologies have been 

used to understand the learner’s interaction with content to 
discover general patterns and trends rather than to recommend 

adapted learning paths to learners.  

Other approaches, in the course generation research community, 

address the need for recommending not only the learning objects 

themselves, but sequences of learning objects. Sicilia et al. [17] or 

Ulrich and Melis [20] addressed learning design concepts and 

requirements through Course Generation. Though numerous 

solutions have been proposed, using statistical methods [13], 

decision rules [23], production rules [11], Markov processes [8] 

and Hierarchical Task Network Planning [17, 21, 22], most of 

them do not take into account eventual competency dependencies 

among learning objects and/or are not designed for large 

repositories of interdependent learning objects1. 

Therefore, we detailed in [7] a dynamic graph based model and a 

heuristic approach tailored to find a learning path in a graph 

containing millions of learning object nodes.  

This paper is an extension of this previous work and summarizes 

the model, the heuristic presented in [7], and proposes a major 

optimization to calculate a global optimum learning path. In the 

previous work [7], we applied a greedy heuristic algorithm to 

obtain a pseudo-optimal learning path from a set of cliques. 

Greedy heuristics are efficient, but they sometimes get stuck in a 

local solution and fail to find a global optimum [26]. They are 

based on an intimate knowledge of the problem structure and have 

no scope of incremental improvement. 

                                                                 

1 A more complete discussion can be found in [7]. 

 

 



Therefore, in this work we slightly reformulate our model in order 

to fit as an integer programming problem and we propose an exact 

method based on the branch-and-bound algorithm. 

2. PROBLEM CONSIDERED 
In order to facilitate the understanding of the presented model, 

several key elements and assumptions need to be clearly defined. 

A competency can be seen as a knowledge component being part 

of a “model that decomposes learning into individual knowledge 
components (KCs)” [16]. In this paper, a competency is “an 
observable or measurable ability of an actor to perform a 

necessary action(s) in given context(s) to achieve a specific 

outcome(s)” [12]. A competency in our situation can be a 

prerequisite to the efficient completion of a learning object. 

According to Wiley [25], a learning object is “any digital resource 
that can be reused to support learning”. In the rest of the paper we 
define the learning object as any digital resource that can be 

reused to provide a competency gain. 

A learner is a dynamic user interacting with learning objects in 

order to increase his/her competencies from an initial set to a 

targeted set of competencies. We assume that a learner completing 

a learning object will gain the competencies targeted to be 

transmitted by the interaction with the learning object. We also 

assume that a learner who would not possess the prerequisite set 

of competencies required by a learning object should not attempt 

this learning object since this would result in a limited 

competency gain. 

Last but not least, we assume that the number of learning objects 

available is very large (millions to billions of learning objects) and 

that each learning object cannot provide the gain of a competency 

that is a pre-requisite to itself. 

2.1 Graph Theory Contribution 
Graph theory aims at studying mathematical structures composed 

of elements having relationships or connection between them. The 

use of directed graphs is not a novelty in e-learning systems [1, 3, 

24, 25]; however, we were unable to find a formal model for 

discussing learning path problems based on graph theory, 

especially one taking into account the dynamic nature of a 

learning environment. 

A directed graph, or digraph, G = (V, E) consists of: 

 A non-empty finite set V of elements called vertices or 

nodes, 

 A finite set E of distinct ordered pairs of vertices called 

arcs, directed edges, or arrows.  

Let G = (V, E) be a directed graph for a personalized learning 

path. Each vertex or node in G corresponds to a learning object. 

Two vertices are connected if there exists a dependency relation, 

such that one vertex satisfies the prerequisites of the other. So, 

each edge between two vertices    {   } means that the learning 

object   is accessible from  . The accessibility property required 

to define edges between vertices relies on post and pre-requisite 

competencies associated to each learning object. 

Considering    {   }, this edge means that after having 

completed the learning object u, the learner should have the 

required competencies to undertake resource v. By extension, each 

vertex v is represented by a pair (    ,      ) where: 

      is a set of the competencies required by vertex v 

       is a set of competencies offered by vertex v 

The relationship between learning objects and competencies is 

multidimensional [6]: a learning object can require several 

competencies and transmit more than one competency to the 

learner as well. The existence of an edge between two learning 

objects u and v can be formalized by the following formula:        ሺ ሻ         ሺ ሻ       {   }  ሺ           ሻ 
where     ሺ ሻ         ሺ ሻ means that the competencies required 

by v are provided by learning object u. Condition 1 is sufficient 

but not necessary. For example, before having completed u, the 

learner might already have some or the totality of the 

competencies required by v. This means that we may have an arc 

between u and v even though none the competencies required by v 

are provided by u. In other words, edge set   also depends on the 

learner’s competency set at time t:    ሺ        ሺ ሻሻ and         ሺ ሻ  {       } where        are competencies which 

the learner possesses. As a result, graph G is a dynamic directed 

graph and condition 1 can be strengthened by the necessary and 

sufficient condition 2:     {   }        ሺ ሻ         ሺ ሻ          ሺ ሻ  ሺ           ሻ 
2.2 Model Dynamicity 
The dynamicity of our model is due to the fact that a learning 

object can bring competencies that could be among the 

prerequisites of future learning objects. 

 

Figure 1. Edge dynamicity.  

 

For example, as shown in Figure 1, a learning object D could be 

accessible to a learner if he has acquired the competencies c1 and 

c2. Assuming that competency c1 is provided by learning objects 

A and C and competency c2 is provided by learning objects B and 

C; D is reachable if learning objects A and B are completed or if 

learning object C is completed. If a learner completes learning 

object A at time t and learning object B at time t+1, the learner 

will have the competencies required to reach D and according to 

the condition 2, a new edge between B and D will be created (red 

edge on Figure 1). 

3. INVESTIGATED SOLUTION 

3.1 Reducing the solution space 
Eliminating irrelevant learning objects is generally the first step of 

a course generation tool [1, 15]. In our case, as the learning object 

repository is supposed to be very large, the learning objects 



cannot all be checked individually. The approach we chose 

consists in reducing the considered solution space by obtaining an 

induced subgraph H which consists of all the vertices and edges 

between the vertices in G that could be used in the learning path.  

The algorithm can be seen as a loop generating complete sub-

graphs, or cliques, until one such clique is generated whose 

prerequisites are a subset of the learner’s competencies. Cliques 
are generated in a top-down fashion where we begin with the 

target clique, which is composed of a single learning object (we 

create a fictitious learning object, β, whose prerequisite 

competencies correspond to the list of the learner’s target 
competencies). Cliques are then generated by finding every vertex 

where at least one output competency is found in the prerequisite 

competencies of the clique (the union of all prerequisite 

competencies of every learning object within the clique) to which 

it is prerequisite. As such, cliques contain the largest possible 

subset of vertices which satisfies the condition “if every learning 
object in the clique is completed, then every learning object in the 

following clique is accessible”. We simplify the stopping 

condition by adding a second fictitious object, α, into the dataset 
with no prerequisite competencies and with the learner’s current 
competencies as its output competencies. If a clique contains this 

object, the stopping condition is true. 

 β6 
 

v1 A6
5     E

6
3,5  

↑  6 

v2 T3,2,4
7  U

5
0   

↑  3,5 

v3 
L0,7

8,9
   I7

9 K
0
8   

↑  0, 7 

 Α8,9  ↑  8, 9 

α: Fictitious LO with initial learner competency state 

β: Fictitious LO with targeted learner competency state 

LO list of gained competencies LO list of prerequisite competencies 

Figure 2. Induced sub-graph generation. 

 

Considering the target competency β as shown in Figure 2, all the 

vertices leading to those competencies (competency 6 in Figure 2) 

are selected in a set v1, then the learning objects leading to the 

prerequisites of set v1 (competencies 3 and 5) are selected from 

graph G to create the set v2. This mechanism continues until the 

prerequisite competencies of the set vn are all competencies which 

the learner has already acquired.  

 

 

Figure 3. G’ consists of connected cliques. 

 

As shown in Figure 3, G’, consisting of the vertices E of sets 
v1,…,vn, is an induced sub-graph of G. If the learner has 

completed all the vertices of vi, he/she will have access to all the 

vertices of vi+1, thus all subsets of vertices of vi can be considered 

to be a clique. 

In addition to reducing the solution space, clique generation is 

also an efficient way to check whether a solution learning path 

exists between α and β. If the algorithm is not able to generate 

cliques linking α and β, there is no need to proceed forward with 

an algorithm aiming at finding one of the possible solutions. 

3.2 Greedy Algorithm 
Once the induced sub-graph is obtained, we use a greedy 

algorithm that searches for a local optimum within each clique. 

The definition of such a local optimum, depending on the dataset 

and the results pursued, has to follow a specific heuristic or 

strategy.  

The shortest path strategy seems to be widely accepted in the 

literature [1, 27]. This strategy is not necessarily the best to adopt 

in any situation since the proposed learning path might lead to the 

learning of non–essential competencies and potentially cognitive 

overloads. For example a learning object could lead to 

competency gains that would not be required to reach the targeted 

learner competency state; there is no need to understand the proof 

of the Landau Damping to learn about the history of theoretical 

physics. Considering a learning object presenting an introduction 

to the perturbation theory and a second one introducing the theory 

and the proof of the Landau Dumping, it might make sense to 

choose the first one in order to minimize the cognitive load to the 

learner. Some might argue that using such “straight to the point” 
heuristic might limit too drastically the natural curiosity of the 

learner. As any heuristic, we agree that it is discussable but this is 

not the purpose of this paper. 

The greedy algorithm considered attempts to find a path by 

considering each clique one after the other and reducing it to a 

minimal subset of itself which still verifies the condition “if every 
learning object in the clique is completed, then every learning 

object in the following clique is accessible”. 

  



 β6  

v1 A
6
5     E

6
3,5 ↑  6 

v2 T
3,2,4

7  U
5
0 ↑  3,5 

v3 L
0,7

8,9
   
I
7
9 K

0
8 ↑  0,7 

 Α8,9
 ↑  8, 9 

α: Fictitious LO with initial learner competency state 

β: Fictitious LO with targeted learner competency state 

LO list of gained competencies LO list of prerequisite competencies 

Figure 4. Illustration of the greedy algorithm execution 

 

The first clique considered will be the one leading to the targeted 

competencies (the clique satisfying the prerequisites of β). In the 
case of the three cliques v1 to v3 as illustrated by Figure 3, v1 will 

be considered first followed by v2 then by v3. 

For each clique, the local optimum is considered obtained when 

the minimum subset of vertices with a minimum “degree”, being 
the sum of the number of prerequisite competencies and output 

competencies of the vertex, are found. In other words, the greedy 

algorithm select in each clique a set of learning objects 

minimizing the number of competencies required and gained in 

order to locally limit the cognitive load of the selected material. 

The greedy algorithm locally optimizes a function called “deg” 
(for degree) detailed in the following section. 

For clique v1, the selected learning object is A since its number of 

prerequisites is smaller than that of E while they share the same 

competency gain. As A has been chosen in v1, only the objects in 

v2 respecting the new v1’s prerequisites is chosen. As a result, the 

algorithm chooses U in v2. In v3, K and L lead to v2’s prerequisite 
but K requires fewer prerequisites than L, therefore K is selected 

and the proposed learning path is      . 

4. OPTIMIZATION 
In this section we present our mathematical model for learning 

path discovery and then we introduce the algorithm for solving 

our mathematical model. 

After eliminating irrelevant learning objects in the first step, we 

generate the optimal solution from the obtained induced sub-graph 

as presented in Figure 4. For this purpose, we applied in [7] a 

greedy algorithm to obtain an optimal or pseudo-optimal learning 

path from a set of cliques. Greedy heuristics are computationally 

efficient, but they sometimes fail to find a global optimum as we 

explain in the following section. 

4.1  Notation and limits of the Greedy 

heuristic 
Let     ,     ,      the matrices representing the distribution of 

the   competencies that are prerequisite to the   items contained 

in the   cliques, the   competencies that are gained when the n 

items of the   cliques are performed, and the clique distribution of 

the n items. Note that the matrix      could be considered as a Q-

Matrix [5]. 

 

Considering our example (Example 1): 
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From this example the solution sequence using the greedy 

algorithm is      .  

To check if we get an optimal solution or not, we have to calculate 

the objective function called deg. The objective function     
returns the total number of prerequisite and gained competencies 

of a set of learning objects.  

We can draw from the previous example the following conditions 

to check if we have an optimal solution or not.  

Let   {               } a solution set (   contains at least one 

learning object as in example 3).                                             ሺ ሻ                              ሺ  ሻ             ሺ  {               }ሻ  ∑∑ሺ           ሻ 
   

   
     ሺ   ሻ 

                                    ሺ   {                   }ሻ     ሺ  {               }ሻ   ሺ  ሻ 
Condition ሺ ሻ and ሺ  ሻ mean that the competencies required by a 

clique set have to be covered by the gains of the previous clique 

set and two different clique sets cannot share the same clique.  

While condition ሺ   ሻ defines the deg function, condition ሺ  ሻ 
introduces the optimality condition. A learning path is optimal if 



no other path with a lower degree exists. However this doesn’t 
apply at the clique level since the optimal     is not necessary the 

set of clique   having the lowest degree. The global optimum is 

not the sum of the local optima calculated by the greedy 

algorithm. 

The following example highlights this case where local optima 

obtained by the greedy algorithm lead to non-optimal solution. 

Example 2: 

 β6 
 

v1 M6
5     N

6,7
4  

↑  6 

v2 O5
3,4  P

4
8   

↑  4,5 

v3 
T8

7
   R3.4

7  
↑  3, 4, 8 

 α7  ↑  7 

    ሺ         ሻ                   ሺ         ሻ               
The solution obtained by the greedy algorithm is              and the associated value of the objective function 

deg (  ) is equal to 10. As the algorithm starts from  , it chooses 

in each clique the learning object with the lowest degree which is   and keeps going until it reaches  .  

The path               is an alternative that the 

algorithm did not find. It’s even a better alternative since     ሺ  ሻ         ሺ  ሻ      and the optimal solution. 

The following example highlights another case where local 

optima obtained by the greedy algorithm lead to a non-optimum 

solution. In this example, two learning objects are selected in one 

of the generated cliques.  

Example 3: 

 β6 
 

v1 M6
5     N

6,7
4  

↑  6 

v2 O5
3,9  P

4
8   

↑  4,5 

v3 
T8

7
   Y9

7,  Z
3

7  
↑  3, 9, 8 

 α7  ↑  7 

    ሺ           ሻ                  
The objective function of the path (         ) is 9, 

which means that the path (         ) is the optimal 

solution. 

In the following section, we use the notation introduced here to 

propose a mathematical formulation of our learning path 

optimization problem as an integer programming problem.  

4.2 Formulating the integer programming 

problem 
Let us consider n items or learning objects and m competencies;      is the matrix representing m prerequisite competencies for 

the n items and      is the matrix representing the   

competencies that are gained when the n items are performed. In 

other words, if     = 1 means that the item i has competency j as 

one of its prerequisite competencies; and      = 1, means that the 

competency   is gained when the item   is performed. The 

personalized learning path may then be formulated as a binary 

integer programming (BIP) as follows: 

Minimize: 

∑ቌ∑(         ) 
     ቍ 

         ሺ ሻ            ሺ ሻ 
Subject to: 

       ሺ∑         
   ሻ                              ሺ ሻ                                         {   }  

 

X = {xi, i=1,...,n},  are the decision variables such that:     {                                                                                      ሺ ሻ 
 

We suppose that x1 = 1 and xn = 1, knowing that:                                                                                    

 

The function (1) represents the total number of prerequisite and 

gained competencies to be minimized. The constraints (2) states 

that if the item i has competency j as one of its prerequisite 

competencies; the competency j should be gained from the items 

on the learning path (1,…, i-1). Our problem is to minimize the 

objective function (1) subject to (2) and (3).  

To find the optimal learning path we have to solve the BIP 

problem with (n+m) constraints and n decision variables xi=1,…n  {   }   
Considering example 3, the prerequisite and gain matrices Q and 

G can be written as follows: 

The competencies that are required by the items are represented 

by the matrix Q (9x7). 

  
( 
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The competencies that are gained by the items are represented by 

the matrix G (9x7). 

  
( 
   
   
  
                                                                                                           ) 

   
   
  

 

 

The BIP formulation of example 3 is given as follows: 

Minimize :  

deg (X) = x1+2x2+2x3+2x4+3x5+2x6+2x7+3x8+x9 

Subject to: 

x2 - x1    

x3 - x1    

x4 - x1    

x5 - x3    

x5 - x4    

x6 - x2    

x7 - x5    

x8 - x6    

x9 – x7- x8        {   }         

x1 is the fictitious learning object α with initial learner 

competency state. 

x9 is the fictitious learning object   with targeted learner 

competency state. 

Since x1 = x9 = 1, then our BIP becomes: 

Minimize :    

deg (X) = 2x2+2x3+2x4+3x5+2x6+2x7 +3x8 

Subject to: 

x5 - x3    

x5 - x4    

x6 - x2    

x7 - x5    

x8 -  x6    

- x7 - x8         {   }         

4.3 The Branch-and-Bound (B&B) method 

for solving the BIP problem 
Since the BIP problem is bounded, it has only a finite number of 

feasible solutions. It is then natural to consider using an 

enumeration procedure to find an optimal solution. However, in 

the case of large learning object repositories (millions of items), 

an enumeration procedure might be ill adapted (even after 

reducing the solution space); therefore, it is imperative to cleverly 

structure the enumeration procedure so that only a tiny fraction of 

feasible solutions need to be explored.  

A well-known approach called branch-and-bound technique 

(B&B) provides such a procedure. B&B traces back to the 1960s’ 
and the work of Land and Doig [14]. Since then, B&B algorithms 

have been applied with success to a variety of operations research 

problems. B&B is a divide and conquer method. It divides a large 

problem into a few smaller ones (This is the “Branch” part). The 

conquering part estimates the goodness of the solution that is 

obtained from each of the sub-problems; the problem is divided 

until solvable sub-problems are obtained (this is the “bound” 
part). 

For the bounding part we use a linear programming relaxation to 

estimate the optimal solution [26]. For an integer programming 

model P; the linear programming model obtained by dropping the 

requirement that “all variables must be integers” is called the 

linear programming relaxation of P. 

Figure 5. Branch and bound algorithm that traverses the tree 

by solving BIPs at every node of the tree. 

 

The general approach of a BIP B&B algorithm [26] is presented 

in the following steps (see also Figure 5): 

Initialization: Set deg* = + ∞.  
The initial step represents the root node of the B&B search tree. 

The root node corresponds to the continuous relaxation of the 

BIP(0≤ X ≤1), the solution value provides lower bound. 

Apply the bounding step, fathoming step, and optimality test 

described below. If not fathomed, classify this problem as the one 

remaining “subproblems” for performing the first full iteration 
below. 

Steps for each iteration: 

1. Branching: Among the remaining (unfathomed) 

subproblems, select the one that was created most 

recently (break ties by selecting the subproblem with the 

larger bound). Branch from the node for this 

subproblem to create two new subproblems by fixing 

the next variable (the branching variable) at either 0 or 1 

(see Figure 5).  

2. Bounding For each new subproblem, obtain its bound 

by applying the simplex method to its LP-relaxation and 

rounding down the value of deg for the resulting 

optimal solution. 

3. Fathoming (Pruning rules): The pruning rules for B&B 

BIP are based on optimality and feasibility of BIP. For 



each new sub-problem, apply the fathoming tests and 

discard those sub-problems that are fathomed by any of 

the tests.  

Optimality test: Stop when there are no remaining sub-problems: 

 The current incumbent is optimal,  

 Otherwise, return to perform another iteration. 

A sub-problem is fathomed (dismissed from further consideration) 

if it verifies one of the following tests: 

1. The relaxation of the sub-problem has an optimal 

solution with deg < deg  where deg* is the current best 

solution (The solution is dominated by upper bound); 

2. The relaxation of the sub-problem (LP-relaxation) has 

no feasible solution; 

3. The relaxation of the sub-problem has an optimal 

solution that has all binary values. (If this solution is 

better than the incumbent, it becomes the new 

incumbent, and test1 is reapplied to all unfathomed sub-

problems with the new larger deg*). 

For example, the example 3 solved by B&B produces an optimal 

solution with deg* = 9 and x2=1, x6=1, x8=1 where the number of 

nodes explored is 1 because the first LP-relaxation at node 1 gives 

an integer optimal solution with deg*=9 and the 3rd fathomed test 

is true, so we do not need to branch anymore. 

Decision Variables x1 x2 x3 x4 x5 x6 x7 x8 x9 

LO α T Y Z O P M N   

X* 1 1 0 0 0 1 0 1 1 

Figure 6. Solution of example 3in the B&B algorithm. 

 

As illustrated in Figure 6, the optimal solution of the B&B 

algorithm is X*={1, 1, 0, 0, 0, 1, 0, 1, 1} and the optimal path is:          .  

5. CONCLUSION 
The clique based approach is an asset since it offers an efficient 

way to reduce the solution space and check the existence of a 

solution. However, a greedy search within the cliques to find a 

leaning path does not lead, in many cases, to the best learning path 

according to the criteria considered. 

Binary integer programming is a well-known mathematical 

optimization approach. While reformulating the conditions an 

optimal learning path should meet, we realised how we could 

benefit from expressing the constraints as a binary programming 

problem.  

Our preliminary implementation of the proposed optimization 

using the bintprog function (MATLAB), a function based on the 

branch- and-bound (B&B) algorithm, shows the accuracy of the 

proposed integer program model.   

In future work, we will apply the proposed binary integer model 

in order to build a learning design recommendation system in the 

case where learning objects are stored in very large repositories. 

Even though the B&B algorithm is highly accurate and somehow 

computationally efficient, it is not efficient enough to deal with 

very large size problem instances. In some cases, the bounding 

step of B&B is not invoked, and the branch and bound algorithm 

can then generate a huge number of sub-problems.  

Moreover, as mentioned in [7], the efficiency of reducing the 

solution space with the cliques’ mechanism is highly dependent 

on the dataset topology (average number of gain and prerequisite 

competencies per learning object). The solution space may remain 

large after the reduction 

Therefore, to deal with very large problems, we will implement a 

variant of the B&B algorithm such as Branch & Cut [2] or Branch 

& Price [4]. Applegate et al. [2] showed how Branch & Cut could 

get a global optimal for extremely large binary optimization 

problems. It will be then interesting to measure both in terms of 

computational time and accuracy how the greedy search compares 

to the B&B-like approach.  
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