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Abstract

Prismatic glazing is found in many building applications such as complex fenestration systems to 

control solar heat gains and glare, and re-direct sunlight to building interior spaces, and daylighting (and 

lighting) systems to enhance their optical and lighting performance. However, modelling and simulation of 

such prismatic glazing has been a very difficult task due to its versatile and complex geometrics. This paper 

presents the development and validation of a simplified model to compute the optical characteristics and 

dominant directions of the transmitted and reflected beam rays of saw-tooth like prismatic glazing.  The 

model was based on tracing the average ray, and was extensively validated using third-party data derived 

from ray tracing computer simulations, and measurement using integrating spheres and goniophotometers.  

The model’s predictions for the transmittance and reflectance of single and double prismatic panes 

compared overall well within the accuracy of the third-party data over all incidence angles.



Introduction

Prismatic glazing consists of arrays of micro or macro-replicated shapes which may reflect, refract and 

redirect incoming light to suit a particular application.  The underlying features of prismatic glazing lay in 

the total internal reflection, angular re-direction of incident light, and light scattering.  Those features have 

been widely exploited in many building applications.  In complex fenestration systems such as windows, 

skylights, and solar shading devices, prismatic glazing is used to control solar heat gains and glare (e.g., 

reflective and angular-selective glazing) and re-direct sunlight to ceiling surfaces of building interior spaces 

(Wirth et al.,1998; Lorenz, 2000; Walze et al., 2005; Hocheng et al, 2010; Hocheng et al, 2011; Klammt et 

al., 2012).  In daylighting systems such as tubular daylighting devices (Solatube, 2012; ODL, 2012; 

Skydome, 2012), sunlighting systems (Laouadi, 2011; Laouadi and Coffey, 2012), and light guides 

(Whitehead et al.,1982; Saxe, 1989; 3M, 2000), prismatic structures are used to enhance the system optical 

performance (light transmission, and diffusion) and to transport sunlight into deep spaces of building 

floors. In lighting systems, prismatic structures are used in light diffusers to enhance transmission 

efficiency and quality of light diffusion.  In solar energy systems such as photovoltaics and solar collectors, 

prismatic structures are used as light trapping and concentration devices to increase system efficiency 

(Gombert et al, 2004a; Slaman and Griessen, 2009; Blasi et al, 2010; Chen et al., 2010).  However, despite 

these widespread applications, modelling and simulation of prismatic glazing has been a very difficult task 

due to its versatile and complex geometrics.

There are various shapes of prismatic structures molded on thin film or thick glazing substrates.  Saw-

tooth like prismatic structures is one of the popular shapes.  Due to their complex geometry and its 

interaction with electromagnetic waves, advanced optical modelling and detailed measurement techniques 

have been used to characterise their optical performance.   Critten (1988) developed a very simple model, 

ignoring medium absorption, to compute light transmission and distribution of right-angle macroscopic 

prismatic glazing.  The aim of the study was to optimize the light distribution through the glazing of an 

east-west aligned greenhouse situated at high latitude by redirecting the light to the northern and southern 

areas of the greenhouse based on the seasonal changes in the sun path.  Wirth et al. (1998) used commercial 

ray tracing software to compute the angular profiles of transmittance for right-angle single and double 



prismatic glazing used in solar shading devices.  Ouellette et al. (1992) used the Monte Carlo ray tracing 

technique to compute the reflectance of single and double stack of right-angle prismatic films.   Gombert et 

al. (2004b) used specialized optical computer codes based on the diffraction theory of electromagnetic 

waves to compute the transmittance of microscopic prismatic reflectors for solar shading devices.  

Andersen at al. (2003), Andersen (2004), and Andersen (2006) developed a new video goniophotometer to 

measure the bidirectional transmission distribution functions of right-angle and asymmetric prismatic 

glazing and films.  Ray tracing simulations using commercial software were also performed for comparison 

with the measurement results.  Good agreement between the two approaches was found.  The 

goniophotometer results for the hemispherical transmittance were also compared with third-party 

measurement results using integrating spheres.  Both measurement results compared well within the 

measurement uncertainty. 

Objectives

The present study is a part of an ASHRAE research project (1415-RP) to evaluate the optical and 

thermal performance of tubular daylighting devices.  The aim of this paper is to develop a simplified model 

to compute the optical characteristics of prismatic glazing with quick calculation time so that the model can 

be integrated in existing fenestration computer design tools.  The specific objectives are: 

 To develop an analytical algorithm to compute the optical characteristics (transmittance, reflectance 

and absorptance) of two-dimensional, saw-tooth like prismatic panes at oblique incidence angles.  

 To validate the model using third-party measurement and detailed ray tracing computer simulations.

Mathematical Formulation

Consider a saw-tooth like prismatic pane as shown in Figure 1. The prism is characterized by its slope 

angle (), draft angle (), and height (h).  The pane total thickness is noted as (d).  Right angle prisms (

== /4) are the most popular in daylighting and lighting applications.  Right angle prismatic panes may 

act as an angularly-selective glazing, totally reflecting incident radiation within certain acceptance angles 

and highly transmitting in the remaining angles.   Other prism shapes are also used to significantly change 

the direction of the transmitted rays from the incidence direction to concentrate or diffuse beam light.  



Transmission, reflection and absorption of incident radiation are dependent on the prism orientation with 

respect to the direction of the incident radiation, and position of prism gratings on the pane surface.  To 

derive general formulations, consider a coordinate system (x, y, z) whose x-axis is parallel to the prism 

longitudinal axis (groove direction), and the z-axis is normal to the pane surface.  The x-axis of the prism is 

oriented in such a way that the sloped facet faces the positive direction of the y-axis (the draft facet faces 

the negative direction of the y-axis). The prism x-axis may be oriented to make an angle (xp, positive 

counter-clockwise) with respect to the x-axis of a reference coordinate system attached to the pane surface.  

In the following, an approximate model will be developed to compute the optical characteristics of a 

prismatic pane based on the ray tracing technique applied to the mean (average) radiation path.  Although 

the prediction of the optical characteristics of prismatic panes is a complex task due to the complex 

geometry, the aim of the approximate model is to sufficiently predict the total transmittance and reflectance 

and the dominant directions of the transmitted and reflected rays to facilitate their ray tracing in other 

glazing panes making up a fenestration system.  Dispersion of the incident rays in directions other than the 

dominant directions is treated diffuse in the model despite its importance in lighting calculation.  The 

following assumptions are used:


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Figure 1 Cross-section of a prismatic pane

ASSUMPTIONS

 Prism pitch (groove spacing) is larger than the wavelength of incident radiation so that radiation 

diffraction/scattering at the prism facets is neglected (Blasi et al., 2009);

 Only the average rays reaching both prism facets are traced;



 Only the first reflection and transmission cycles at the prism facets are traced.  Subsequent internal 

reflection cycles are assumed to follow the same path as in the first reflection cycle.

FRONT OPTICAL CHARACTERISTICS

Figure 2 shows the path of an average ray incident on the pane surface when the prism is placed at the 

back surface of the glazing pane.  The incident rays make an azimuth angle (i) with respect to the prism x-

axis, and a polar angle (z,i) from the z-axis.  Incident rays may reach both the sloped or draft facet, and 

may undergo multiple upward or downward reflections between the two facets before exiting from the front 

or back pane surface.  Up to two upward reflections are traced in the model (as shown in the figure 2), but 

only one reflection is accounted for in the downward reflections.   Subject to the foregoing assumptions, the 

front reflectance and transmittance of a prismatic pane are expressed as follows:

(1)

(2)

where:

F : averaging factor (to be determined);

f,s : front reflectance of pane for an average ray reaching the sloped facet of the prism; 

f,d : front reflectance of pane for an average ray reaching the draft facet of the prism; 

f,s : front transmittance of pane for an average ray reaching the sloped facet of the prism;

f,d : front transmittance of pane for an average rays reaching the draft facet of the prism.



q0 0 (1-1)
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Figure 2 Path of an average ray incident on one of the prism facets when the prism is placed on 
the back pane surface

Equations (1) and (2) are evaluated by tracing an average ray for each prism facet. The averaging 

factor (F) is determined based on the area proportion of the average refracted ray at point (p0) reaching the 

prism facets:

(3)

where (t.p0) is the profile angle of the refracted ray at point p0, expressed as follows:

(4)

where:

z,t,i,p0 : polar angle from the negative z-axis of a refracted ray at point p0 and incident on the slopped 
prism facet, Equation (42), (radians);

t,i,p0 : azimuth angle from the x-axis of a refracted ray at point p0 and incident on the sloped prism 
facet, Equation (42), (radians).



The average dominant directional angles of rays transmitting through or reflecting off the 

prismatic pane are set equal to the directional angles of rays incident on the sloped facet if the product 

(F  f,s) is higher than the product ((1-F) f,d ).  Otherwise, the average dominant directional angles are 

equal to those when rays are incident on the draft facet. 

The front reflectance and transmittance for an average ray reaching the first prism facet are expressed 

as follows:

(5)

(6)

where:

q0 : interface radiation flux at point p0 per unit incident radiation flux; 

q1 : interface radiation flux at point p4 per unit incident radiation flux for the first inter-reflection 
cycle; 

qj : interface radiation flux at point p4 per unit incident radiation flux for the jth  inter-reflection cycle;

f,1 : front reflectance of pane for an average ray reaching the first prism facet (either the sloped or 
draft facet); 

0 : interface reflectivity at point p0; 

1 : interface reflectivity at point p1; 

2 : interface reflectivity at point p2; 

3 : interface reflectivity at point p3; 

f,1 : front transmitance of pane for an average ray reaching the first prism facet (either the sloped or 
draft facet); 

0 : transmissivity between points p0 and p1; 

1 : transmissivity between points p1 and p2; 

2 : transmissivity between points p2 and p3;

3 : transmissivity between points p3 and p4.

The interface radiation fluxes (qj) are expressed recursively as follows:

(7)

Substituting Equation (7) in Equations (5) and (6), one obtains:

(8)

(9)



Equations (8) and (9) may also be applied to the second prism facet, by replacing the index (1) with 

(2). 

It should be noted that Equations (8) and (9) are developed when the average incident ray undergoes 

two upward reflections off the first prism facet (points p1 and p3), and one reflection off the second facet at 

point p2.   If the average ray reflecting upward off the first facet at point p1 does not reach the second facet 

at point p2, the interface reflectivity and transmisivity at points p2 and p3 are set equal to 2 = 3 = 2= 3 = 1 

in Equations (8) and (9).  The average upward reflected ray at point p1 does not hit the second prism facet at 

point p2 if the profile angle of the reflected ray incident on the second facet is lower than a threshold value, 

expressed as follows:

(10)

where:

2 : polar angle from the z-axis of the normal of the internal surface of the second prism facet at point 
p2 (radians);

z,r,i,p1 : polar angle from the z-axis of the average ray reflected off the first prism facet at point p1 and 
incident on the second prism facet at point p2, Equation (36), (radians);

r,i,p1 : azimuth angle from the x-axis of the average ray reflected off the first prism facet at point p1

and incident on the second prism facet at point p2, Equation (36), (radians);

p2 : azimuth angle from the x-axis of the normal of the internal surface of the second prism facet at 
point p2 (radians);

r,p1 : profile angle from the z-axis of the average ray reflected off the first prism facet at point p1

(radians).

Similarly, if the average ray reflecting upwards off the second facet at point p2 does not reach the first 

facet at point p3, the interface reflectivity and transmisivity at point p3 are set equal to 3 = 3 = 1 in 

Equations (8) and (9).  The average upward reflected ray at point p2 does not reach the opposite prism facet 

at point p3 if the profile angle of the reflected ray at point p2 is lower than a threshold value, expressed as 

follows:

(11)

where:

1 : polar angle from the z-axis of the normal of the internal surface of the first prism facet at point p1

(radians);

z,r,i,p2 : polar angle from the z-axis of the average ray reflected off the second prism facet at point p2, 
and incident on the opposite prism facet at point p3, Equation (36), (radians);



r,i,p2 : azimuth angle from the x-axis of the average ray reflected off the second prism facet at point p2

and incident on the opposite prism facet at point p3, Equation (37), (radians);

p1 : azimuth angle from the x-axis of the normal of the internal surface of the first prism facet at point 
p1 (radians);

r,p2 : profile angle from the z-axis of the average ray reflected off the second prism facet at point p2

(radians).

The average ray is reflected upwards off the prism facet at point p3 if its polar angle z,r,p3 > /2.  

Otherwise, the average ray reflected at point p3 is channelled downwards.  In the latter case, the interface 

reflectivity at point p3 is set to zero in Equations (8) and (9). 

The interface reflectivity and transmissivity in Equations (8) and (9) are calculated using the Fresnel

laws of optics (Siegel and Howell, 2002).  For a polarized radiation, the interface reflectivity is expressed 

as follows:

(12)

where:

i : angle of incidence from the surface normal (radians);

t : angle of refraction from the surface normal (radians);

 : interface reflectivity for the parallel component of polarized radiation;

 : interface reflectivity for the perpendicular component of polarized radiation.

The angle of incidence is related to the angle of refraction using the Snell’s law:

(13)

where ni and nt are the index of refraction of the incidence, and refraction medium, respectively.

The transmissivity of a medium (m) indicates the attenuation of the radiation intensity in the medium 

(denoted by m). It is expressed as follows:

(14)

where km is the attenuation coefficient of medium (m-1, ft-1), tm the thickness of medium (m, ft), and  the 

wavelength of radiation (m, ft).



Equations (13) and (14) are applied to each interface at the points (p0, p1, p2, p3, p4) of Figure 2.  The 

average thickness of the media between p0 and p1, p1 and p2, p2 and p3, and p3 and p4 are given by the 

following relation:  

(15)

If the reflected rays at point (p1) do not reach the opposite prism facet at point (p2), the thickness of the 

medium between the points p1 and p3 is t1 = t0.  Similarly, if the reflected rays at point (p2) do not reach the 

opposite prism facet at point (p3), the thickness of the medium between the points p2 and p4 is t2 = t0.  

The directional angles (polar angle from the z-axis, and azimuth angle from the x-axis) of the reflected 

and refracted rays at the interface points (p0, p1, p2, p3, p4) are calculated using the formula developed in the 

Appendix (Equations (32) to (35) for reflection, and Equations (38) to (41) for refraction) by substituting 

the tilt and azimuth angles of the interface surfaces.  The tilt and azimuth angles of the sloped and draft 

prism facets are expressed as follows:

(16)

The dominant directional angles for an average ray reaching either the draft or sloped prism facet are 

evaluated at the interface point p1 or p2, or p3 for the transmitted rays, and at the interface point p0 or p4 for 

the reflected rays, depending on the magnitude of the transmitted and reflected radiation fluxes at those 

points.  

BACK OPTICAL CHARACTERISTICS

The back optical characteristics of the prismatic pane may be obtained in a similar way when rays are 

incident on the back pane surface.  Figure 3 shows the average ray path when rays are incident on one of 

the prism facet.  Incident rays reflecting off a prism facet may reach the opposite facet, and then may return 

to the initial facet.  Three refracted rays reaching the points p1, p2, and p3 should, therefore, be traced in the 

pane medium.  To simplify the problem, the refracted ray at point p3 is assumed to follow the path of the 

refracted ray at point p1. The refracted rays within the pane medium may undergo multiple forward inter-

reflections between the prism facets to exit from the planar pane surface.  To avoid tracing those multiple 

inter-reflected rays, only one refection is retained in the model.  A refracted ray at point p1 may directly 



reach the planar surface at point p4, or indirectly after reflecting off the internal surface of the opposite facet 

at point p2 (equivalent to point p2,a in Figure 3).  The refracted ray at point p1 reaches the opposite surface at 

point p2 (p2,a) if its profile angle is greater than a threshold value, expressed as follows:

(17)

where:

z,t,i,p1 : polar angle from the negative z-axis of the average ray refracted at the prism facet at point p1, 
Equation (42), (radians);

t,i,p1 : azimuth angle from the x-axis of the average ray refracted  at the prism facet at point p1 and 
incident on the second prism facet at point p2, Equation (42), (radians);

t,p1 : profile angle from the negative z-axis of the average ray refracted at the prism facet at point p1

(radians).

1 (1-2) 2 (1-5) q0,a 4 1,a 1,a 2,a2,a (1-4) 

qi = 1

p1

p2

p3

p4

q0,b

{(1-1) 112(1-3) 3}(1-4)

1 2 3

q1,a

p5

q0,a 4 (1-1,a)

p1,a

p2,a

p1,b

p2,b

Figure 3 Average ray’s path when the prism is placed on the front pane surface

Similarly, rays refracted at point p2 may directly reach the planar surface at point p5, or indirectly after 

reflecting off the internal surface of the opposite facet at point p1.  A refracted ray at point p2 may reach the 

opposite surface at point p1 (equivalent to p1,b of Figure 3) if its profile angle is greater than a threshold 

value, expressed as follows:



(18)

where:

z,t,i,p2 : polar angle from the negative z-axis of the average ray refracted at the prism facet at point p2, 
Equation (42), (radians);

t,i,p2 : azimuth angle from the x-axis of the average ray refracted  at the prism facet at point p2 and 
incident on the second prism facet at point p1, Equation (42), (radians);

t,p2 : profile angle from the negative z-axis of the average ray refracted at the prism facet at point p2

(radians).

Reflected rays at point p4 may undergo multiple repetitive reflection cycles between the prism facets 

and the planar surface until they decay.  Subsequent inter-reflection cycles are assumed to follow the same 

path as the first reflection cycle.  Reflected rays at point p4 may travel the path p4- p1,a- p2,a- p4, or p4- p2,a-

p1,a- p4.  A reflected ray at point p4 is first directed to the surface at point p1,a, or p2,a if the difference 

between its azimuth angle (r,i,p4, given by Equation (36)) and that of the surface (1,a, or 2,a)  is within 

±/2. Similarly, reflected rays at point p5 follow the same scenario as those rays reflected at point p4.

Subject to the foregoing assumptions, the back reflectance and transmittance of the pane are obtained 

using Equations (1) and (2), respectively.  The averaging factor (F) is calculated using the following 

relation:

(19)

Where (i) is the profile angle of the incident rays, expressed as follows:

(20)

The back reflectance and transmittance of the pane when rays are incident on one of the prism facets 

(denoted by #1) may be expressed as follows:

(21)



  (22)

Where 21 is the reflectivity at the internal surface of the prism second facet at point p2,a for rays 

refracting from the first prism facet at point p1 to reach point p4 (see Equation (17)).  If the refracted rays at 

point p1 do not hit the opposite prism facet at point p2,a, 21 is set to 1.  Similarly, 12 is the reflectivity at 

the internal surface of the prism first facet at point p1,b for rays refracting from the second prism facet at 

point p2 to reach point p5 (see Equation (18)).  If the refracted rays at point p2 do not hit the opposite prism 

facet at point p1,b, 12 is set to 1. The interface radiation fluxes (qi,a, qi,b) are recursively given by the 

following relations:

(23)

(24)

where:

2,a : interface reflectivity for rays incident on the internal surface of the second facet at point p2,a;

2,b : interface reflectivity for rays incident on the internal surface of the second facet at point p2,b;

1,a : interface reflectivity for rays incident on the internal surface of the first facet at point p1,a;

1,b : interface reflectivity for rays incident on the internal surface of the first facet at point p1,b;

2,a : transmissivity for rays reflecting off the internal surface of the second facet at point p2,a;

2,b : transmissivity for rays reflecting off the internal surface of the second facet at point p2,b;

1,a : transmissivity for rays reflecting off the internal surface of the first facet at point p1,a;

1,b : transmissivity for rays reflecting off the internal surface of the first facet at point p1,b.

By substituting Equations (23) and (24) in Equations (21) and (22), one obtains the following relations, 

after simplification of the series terms:

(25)



(26)

It should be noted that a part of the transmitted and reflected radiation fluxes may be treated diffuse 

due to the inter-reflection in the prism geometry.  We define, therefore, the transmission haze as the 

fraction of the beam-diffuse transmitted flux to the total transmitted flux.  Similarly, we define the gloss as 

the fraction of the dominant beam-beam reflection flux to the total reflection flux.  These are expressed as 

follows:

(27)

(28)

Equations (25) to (28) are developed when the reflected rays at point p4 and p5 follow the paths p4-p1,a-

p2,a-p4 and p5-p1,a-p2,a-p5.  If it is not the case, the indices (1,a, or 1,b) are mutually exchanged with the 

indices (2,a, or 2,b), respectively in Equations (25) to (28).

The interface transmissivity in Equations (25) to (28) are obtained using Equation (14) after 

substituting their corresponding incidence angles and the following thicknesses of the media at the points 

p1, p3, p4, p1,a, and p2,a (or p2, p5, p1,b, and p2,b):

(29)

(30)

If the reflected rays at point p1 do not reach the opposite prism facet at point p2, the interface 

reflectivity at the points p2 and p3 are set to 2 =3 = 1 in Equations (25) and (28).  The reflected rays at 



point p1 do not reach the opposite prism facet at point p2 if the profile angle of the reflected rays at point p1

is lower than a threshold value (Equation (10)). Similarly, the upward reflected rays at point p2 do not hit 

the opposite prism facet at point p3 if the profile angle of the reflected rays at point p2 is lower than a 

threshold value (Equation (11)).  In this case (that is the upward reflected rays at point p2 do not reach point 

p3), the interface reflectivity at point p3 is set to 3 = 1 in Equations (25) and (28).  In case, the incident rays 

at point p3 are reflected downwards between the prism facets, the interface reflectivity at point p3 is set to 

zero in Equations (25) and (28).   Incident rays at point p3 are reflected downwards if their polar angle z,r,p3

> /2 (given by Equation (35) ).  If the reflected rays off the prism facet at point p1,a after reflecting off the 

surface at point p4 do not reach the opposite facet at point p2,a (in case rays reflect back to the surface at 

point p4; Equation (17) is thus not satisfied after substituting the rays’ directional angles, z,r,p1,a and r,i,p1,a), 

the interface reflectivity at point p2,a is set to 2,a = 1.  If they do reach the facet at point p2,a, but the 

reflected rays off the facet at point p2,a are upward (z,r,p2,a > /2), the interface reflectivity at point p2,a is set 

to 2,a = 0.  Similar scenario is applied to points p1,b and p2,b.

Again, the directional angles of the reflected and refracted rays at the interface points (p1, p2, p3, p4, p5, 

p1,a, p1,b, p2,a and p2,b) are calculated using the formula developed in the Appendix (Equations (32) to (35) 

for reflection, and Equations (38) to (41) for refraction) by substituting the tilt and azimuth angles of the 

interface surfaces.  The azimuth angles of the prism facet surfaces (facing the air) are given by the 

following equation:

(31)

The dominant directional angles are evaluated at the interface point p4 or p5 for the transmitted rays, 

and at the interface points p1, p2, p3, p1,a, p2,a, p1,b, or p2,b for the upward reflected rays, depending on the 

magnitude of the transmitted or reflected fluxes at those points.

Model Benchmarking

The previous optical model of prismatic glazing was implemented in the research version of in-house 

fenestration software tool (Laouadi and Arsenault, 2003; NRC, 2011) to compute the optical characteristics 

of any combinations of complex panes making up a glazing assembly.  The tool’s optical algorithms were 



based on splitting the reflected and transmitted radiation fluxes into two components: dominant beam-beam 

and beam-diffuse components.   The dominant beam-beam rays were traced from pane to pane till they exit 

a glazing assembly from its front and back surfaces.    In this regard, the front and back optical 

characteristics of each pane were calculated based on the dominant directions of the incident rays on the 

pane’s front and back surfaces.  The dominant directions of the transmitted and reflected rays were 

calculated for each pane based on its geometrical and optical characteristic and the incident ray’s 

directions. The algorithms by Laouadi and Parekh (2007) were used to compute the overall optical 

characteristics of a glazing assembly.  It should be noted that if the reflected and transmitted dominant 

beam rays were not traced from pane to pane (by assuming the reflected and transmitted rays follow the 

directions of the incident rays as it is the case in some fenestration simulation programs), significant 

calculation errors will result in the transmittance and reflectance of glazing assemblies.  In this study, the 

model predictions for transmittance and reflectance were compared with public data derived from computer 

ray tracing simulations, and measurement using integrating spheres and goniophometers.

Figure 4 shows a comparison between the present model’s predictions and third-party ray tracing 

simulations for reflectance of single and double right-angle ( = = 45°) prismatic panes when sunbeam 

rays were incident on the smooth surface of the prismatic pane perpendicular to the grating direction (i = 

90).  The prismatic pane was made of a polycarbonate plastic sheet (index of refraction = 1.59).  The total 

pane thickness including the gratings was 0.5 mm, with the grating height making up 25% of the pane 

thickness. The ray-tracing simulations (Ouellette et al., 1992) used the Monte Carlo approach.   The 

predictions from the simple model of prismatic glazing were in excellent agreement with the detailed ray 

tracing simulations, particularly for the single glazing.  The difference between the simple model and ray 

tracing for the double glazing was mainly attributed to handling the optics of multi-pane glazing assemblies 

in which only the dominant beam-beam component was traced from pane o pane. 
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Figure 4  Model comparison with the ray tracing method for reflectance predictions of a stack 
of right-angle prismatic panes when rays are incident on the smooth pane surface 
perpendicular to the grating direction

Figure 5 shows a comparison between the present model predictions and third-party ray tracing 

simulations for transmittance of single and double right-angle ( = = 45°) prismatic panes when beam 

radiation was incident on the smooth surface of the prismatic pane.  The double glazing was formed by 

tightly joining together the gratings of two prismatic panes to form a single complemented glazing.  The 

prismatic pane was made of a polycarbonate plastic sheet.  The total pane thickness including the gratings 

was 2.7 mm, with the grating height making up 81.5% of the pane thickness (Seeger, 1969). The ray-

tracing simulations (Wirth et al., 1998) used a commercial software tool.   The predictions from the simple 

model compared overall well with the detailed ray tracing simulations, particularly near low and high 

incidence angles.  For intermediate incidence angles (between 15° and 40°), the model predictions were up 

to 33% higher than the simulations, particularly for the complemented double glazing.  This large 

difference may be attributed to the treatment of the double glazing in the SkyVision’s model and ray 

tracing software.  The SkyVision’s model assumes that the transmitted flux through the first layer is 



uniformly incident on the next pane surface (i.e., layers are separated by an air space).  This was not the 

case for the ray tracing method, where both facets of the pane gratings were tightly joined together.  

Furthermore, it is not clear why the ray tracing simulations produced such profile in the intermediate 

incidence angles.  Other third party measurement for a similar prismatic glazing resulted in a different 

profile (compare Figure 5 with Figure 8).
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Figure 5. Model comparison with a ray tracing method for transmittance of single and double 
complemented right-angle prismatic glazing when rays are incident on the smooth pane surface 
perpendicular to the grating direction

Figures 6 and 7 show a comparison between the present model predictions and third-party 

measurement for transmittance of right-angle prismatic glazing when radiation was incident on the grating 

surface perpendicular (i = 90) and parallel (i = 0) to the grating direction, respectively.  The prismatic 

glazing was formed by applying a prismatic thin film on a 6 mm clear glass.  The prismatic film was made 

of a polycarbonate plastic material with a total thickness of 0.686 mm and a grating height of 26% of the 

film thickness (3M, 2000). The present model treated the prismatic glazing as a double glazing (3M film, 



air space, glass) since it was not indicated whether the film was glued to, or merely placed on the glass 

pane (Anderson, 2004).  The third party measurement data were obtained using the integrating sphere and 

goniophotometer procedures.  Given the simplicity of the present model, and the large difference between 

the two measurement procedures (up to 42% deviation), the model predictions compared overall well with 

the measurement for all incidence angles.  Furthermore, the difference between the model’s predictions and 

measurement may also be attributed to the non-ideal (rounded edges of as-manufactured) prismatic 

samples, and dust accumulation in the grating spaces.
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Figure 6  Model comparison with measurement for a right-angle prismatic film over glass pane 
when rays are incident on the grating surface and perpendicular to the grating direction
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Figure 7  Model comparison with measurement for a right-angle prismatic film over glass pane 
when rays are incident on the grating surface and parallel to the grating direction

Figure 8 shows a comparison between the present model predictions and a third-party measurement for 

transmittance of a prismatic glazing when beam radiation was incident on the glass surface perpendicular to 

the grating direction.  Again, given the large difference between the two measurement procedures, the 

model predictions compared overall well with the measurement, particularly for low and high incidence 

angles. The model over-predicted the transmittance by up to 26% for intermediate incidence angles 

(between 15° and 35°).
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Figure 8  Model comparison with measurement for a right-angle prismatic film under glass 
pane when rays are incident on the smooth film surface and perpendicular to the grating 
direction

Figure 9 shows a comparison between the present model predictions and third-party measurement for 

transmittance of an asymmetric ( = 42°,  =°5) prismatic glazing when radiation was incident on the 

grating surface parallel to the grating direction.  The prismatic glazing was made of an acrylic sheet (index 

of refraction = 1.49) with a total pane thickness of 12 mm and a grating height of 58% of the pane 

thickness.  Again, the model predictions compared overall well with the measurement for all incidence 

angles.
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Figure 9  Model comparison with measurement for an asymmetric ( = 42°,  = 5°) prismatic 
pane when rays are incident on the grating surface and parallel to the grating direction

Conclusion

This paper presented the development and validation of a simplified model to compute the spectral 

(monochromatic) or broad-band optical characteristics (transmittance, reflectance, and absorptance) and 

dominant directions of the transmitted and reflected beam rays of saw-took like prismatic glazing.  The 

model was based on tracing the average ray, and was extensively validated using third-party data derived 

from detailed ray tracing computer simulations, and measurement using integrating spheres and 

goniophotometers.  The model’s predictions for the transmittance and reflectance of single and double 

prismatic panes compared overall well within the accuracy of the third-party data over all incidence angles.

The model may easily be implemented in fenestration computer design tools with a quick calculation 

time (in seconds) for the hemispheric transmitted and reflected radiation fluxes compared to detailled ray 

tracing programs, which need to trace a large number (thousands) of rays with a proportional calculation 



time (in hours).  To produce accurate results for a multi-pane glazing assembly containing a number of 

prismatic (or other complex) panes, the fenestration computer program should employ an optical algorithm 

in which the dominant beam rays with their angular direction are traced from pane to pane till they exit the

glazing assembly from its front and back surfaces.

Nomenclature

F : averaging factor

k : attenuation coefficient of medium (m-1, ft-1)

n : index of refraction of a medium

q : ratio of interface to incident radiation flux 

t : thickness of medium (m, ft)

Greek symbols

 : wave length of radiation (m, ft).

 : polar angle from the z-axis of a surface normal (radians)

 : polar angle from the vertical (radians);

 : interface reflectivity, or pane reflectance

 : transmissivity of medium

 : profile angle from the z-axis of incident ray on a tilted surface (radians).

 : azimuth angle from the x-axis of a surface normal (radians);

 : angle between the incident, reflected or refracted ray’s direction and surface normal (radians)



Appendix: Directional Angles of Transmitted, Refracted and Reflected rays

Consider a conical beam ray with directional zenith and azimuth angles (i, i) incident on a ‘complex’ 

glazing surface with tilt and azimuth angles (p, p).  The glazing medium is bounded by two media at its 

front and back surfaces.  Upon contact with the glazing surface, incident rays may undergo reflection back 

in the incidence medium, refraction in the glazing medium, and transmission to the exit medium.  By virtue 

of the laws of optics (Tunnacliffe and Hirst, 1996), reflected, refracted and transmitted rays are in the same 

plane containing the incidence direction and surface normal.  For the purpose of clarity, we use the same 

notations for the transmitted and refracted rays. Figure 10 shows the paths for the reflected and refracted or

transmitted rays.  The geometric and optical characteristic of the glazing medium may change the 

directions of the reflected and refracted or transmitted rays in such a way the refracted or transmitted rays 

follow the direction (t, t) and the reflected rays follow the direction (r, r).   For example, for plain 

glazing with smooth surfaces, the transmitted rays through the glazing will follow the direction of the 

incident rays (t = i;  t =  i), and the reflected rays will follow the specular (mirror) direction.  The 

directions of the refracted rays in the glazing medium are governed by Snell’s law.  If the glazing surface is 

rough or with some built-in optical devices such as prisms or lenses, the directions of the refracted,

transmitted and reflected rays will be different from those for a smooth surface.  In this case, geometrical 

optics should be applied to calculate the directional angles of the refracted, transmitted and reflected rays 

(provided that the radiation wavelengths are significantly smaller than the size of the built-in optical 

devices).  In the following, a method is presented to compute the directional angles of the refracted,

transmitted and reflected rays based on the directional angles of the incident rays on the surface. 

Applying the spherical trigonometry to the incident and reflected ray directions, one obtains:

(32)

(33)

(34)

where:



p : tilt angle of the glazing surface from a horizontal plane (radians);

r : polar angle of the reflected rays from the normal of a horizontal plane (radians);

p : azimuth angle of the tilted glazing surface from the south (or any reference) direction (radians);

r : azimuth angle of the reflected rays from the south  (or any reference) direction (radians);

i : incidence angle between the incident ray’s direction and the glazing surface normal (radians);

r : reflection angle between the reflected ray’s direction and the glazing surface normal (radians).

The reflection angle (r) is usually known for plain glazing with smooth surfaces (r = i), or pre-

calculated using the geometrical optics for complex glazing with known geometries.  The directional angles 

(r, r) of the reflected rays are obtained by solving the non-linear Equations (32) and (34).  Tregenza 

(1993) gave a closed-form formulation, in which the polar angle of reflection (r) is expressed as follows: 

(35)

The azimuth angle of reflection (r) is thus obtained from Equation (33) or (34) after substituting the 

value of the known reflection angle (r).  To avoid multiple solutions, the obtained value of (r) should 

satisfy both Equations (33) and (34).

When the reflected rays from the glazing surface under consideration are incident on another glazing 

surface sharing the same or opposite direction of the z-axis, the polar and azimuth angles of the incoming 

reflected rays (r,i , r,i) on the other surface will take the following form, respectively:  

(36)

(37)

The directional angles (t, t) of the refracted rays at an interface between two media are obtained as 

follows (Stavroudis, 1976):

(38)

(39)

(40)



(41)

where:

n1 : index of refraction of the incidence medium 1;

n2 : index of refraction of the refraction medium 2;

t : polar angle of the refracted rays from the normal of a horizontal plane (radians);

t : azimuth angle of the refracted rays from the south (or any reference) direction (radians);

t : refraction angle between the refracted ray’s direction and the interface normal (radians).

Equations (38) and (41) are solved first to obtain the value of t, which is then substituted in Equation 

(39) or (40) to obtain (t).   To avoid multiple solutions, the value of (t) should satisfy both Equations 

(39) and (40).

Equations (38) to (41) are applied to any interface between two media.  The direction of the 

transmitted rays exiting the glazing medium is thus equal to the direction of the last refracted rays.

When the refracted rays at an interface become incident on another interface sharing the same or 

opposite direction of the z-axis, the polar and azimuth angles of the incoming refracted rays on the other 

interface take the following form, respectively:  

(42)

(43)

It should be added that Equations (38) to (43) are not needed for plain glazing with smooth surfaces, 

for which the transmission angles of rays exiting the glazing medium are equal to the incidence angles (t = 

i; t = i; t,i = i).
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