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ABSTRACT: Halogen bonds are formed when a Lewis base
interacts with a halogen atom in a different molecule, which
acts as an electron acceptor. Due to its charge transfer
component, halogen bonding is difficult to model using many
common density-functional approximations because they
spuriously overstabilize halogen-bonded dimers. It has been
suggested that dispersion-corrected density functionals are
inadequate to describe halogen bonding. In this work, we show
that the exchange-hole dipole moment (XDM) dispersion
correction coupled with functionals that minimize delocaliza-
tion error (for instance, BH&HLYP, but also other half-and-half functionals) accurately model halogen-bonded interactions, with
average errors similar to other noncovalent dimers with less charge-transfer effects. The performance of XDM is evaluated for
three previously proposed benchmarks (XB18 and XB51 by Kozuch and Martin, and the set proposed by Bauza ́ et al.) spanning a
range of binding energies up to ∼50 kcal/mol. The good performance of BH&HLYP-XDM is comparable to M06-2X, and
extends to the “extreme” cases in the Bauza ́ set. This set contains anionic electron donors where charge transfer occurs even at
infinite separation, as well as other charge transfer dimers belonging to the pnictogen and chalcogen bonding classes. We also
show that functional delocalization error results in an overly delocalized electron density and exact-exchange hole. We propose
intermolecular Bader delocalization indices as an indicator of both the donor−acceptor character of an intermolecular interaction
and the delocalization error coming from the underlying functional.

1. INTRODUCTION

Despite its enormous success, density-functional theory (DFT)
has a number of well-known shortcomings,1−4 mostly
stemming from the inability of common density functionals
to accurately model long-range exchange-correlation effects.
Two of these deficiencies are delocalization error and the lack
of dispersion interactions.5,6 In recent years, combining
dispersion corrections with pre-existing common functionals
(in the following, base functionals) has been shown to yield
accurate noncovalent binding energies, enabling the use of
density-functional theory for the calculation of noncovalent
interactions.6,7 In spite of this success, the application of
dispersion corrections still relies heavily on error cancellation,
and little attention has been paid to how different base
functionals treat the nondispersive part of the intermolecular
interaction. In this work, we examine the roles of both the base
density-functional approximation and the dispersion correction
for the study of halogen-bonded complexes.
Halogen bonding8−13 is a type of noncovalent interaction

that is strongly affected by the choice of base functional. A
halogen bond occurs between an electron donor (a lone pair,

an electron-rich π-system, etc.) and the so-called σ-hole10,14 on
the halogen atom in the acceptor molecule. The σ-hole is the
area of relatively positive charge on the otherwise electro-
negative halogen atom that arises from the antibonding orbital
associated with the Y-halide σ-bond, where Y is the atom to
which the halide atom is covalently bonded in the acceptor
molecule. Halogen bonds tend to show the strong preference
for linearity that is characteristic of intermolecular orbital
interactions. This orientation favors maximum overlap between
the Y-halide σ* orbital and the donor lone-pair. Halogen bond
strength is proportional to (i) Lewis base strength (electron-
donating ability), (ii) polarizability of the acceptor, and (iii)
electron-withdrawing strength of groups bonded to the halogen
atom accepting the lone pair. Intermolecular orbital interactions
are an essential component of halogen bonding, although the
extent to which they drive binding compared to electrostatic
interactions from accompanying intermolecular charge transfer
is debatable.12,15
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Halogen-bonded dimers are a type of charge-transfer (CT)
complex15−20 and are therefore affected by delocalization error.
Common semilocal density functionals correspond to ex-
change-correlation hole models that neglect long-range effects.
A well-known property relevant for noncovalent interactions7 is
that, as the reference electron moves away from the system, the
exchange hole should remain attached to the molecule, a
behavior that most density functionals fail to reproduce. In the
context of an inter- or intramolecular charge transfer, incorrect
long-range hole behavior results in an excessive charge transfer
and an attendant overestimation of the binding energy. This is
known as delocalization or many-electron self-interaction
error;17,21−23 it arises from approximate density functionals
not being linear in the electron density.17,24 This shortcoming is
particularly obvious for systems with fractional charges, whose
density is written exactly as a linear combination of densities for
integer-electron systems.
Because of delocalization error, semilocal density functionals

overestimate the binding energies of CT complexes16 and the
magnitude of fractional charge on each monomer. This
behavior has been related to the underestimation of the
donor highest occupied molecular orbital (HOMO)-acceptor
lowest unoccupied molecular orbital (LUMO) gap.25,26 The
correct description of CT requires the use of either global
hybrids with a large fraction of exact exchange equal to or
exceeding 50%, or range-separated hybrid functionals with
correct long-range asymptotics.15,26,27 A similar requirement is
found for the accurate modeling of charge-transfer excitations
in time-dependent DFT.18,19 The errors associated with charge
transfer are present in other noncovalently bonded systems
such as radical-molecule complexes,26,27 anion-molecule
complexes,27 and solvated-electron systems.28

Recent articles by Kozuch and Martin12 and Bauza ́ et al.29

stated that dispersion-corrected functionals are unable to
represent halogen bonding interactions accurately. In their
comprehensive study, Kozuch and Martin12 observed that
common density-functionals overbind systematically, a problem
that is aggravated by the application of pairwise dispersion
corrections (Grimme’s D230 and D331 in their work), and they
speculate that delocalization error is behind this behavior. In
consequence, Kozuch and Martin conclude that halogen bonds
are “just too complex for simple dispersion corrections” and
recommend using alternatives such as M06-2X, which shows
excellent performance on standard benchmarks for halogen
bonding. In this article, we conclusively demonstrate that
delocalization error is behind the spurious overestimation of the
halogen-bond strengths by examining a sequence of dispersion-
corrected functionals with known delocalization error behavior.
In addition, we demonstrate that, provided a functional with
low delocalization error is used, a standard pairwise dispersion
correction (the exchange-hole dipole moment model, XDM) is
able to accurately reproduce the structures and binding energies
of halogen-bonded dimers.
A number of qualitative and quantitative descriptors12,13 and

energy partitions15,32−34 have been used to characterize halogen
bonding. In order to evaluate the charge-transfer contribution
from different functionals and the role of delocalization error,
we use a different approach in this article: intermolecular Bader
delocalization indices (DIs). We show that there is a strong
correlation between DIs and halogen-bond strengths, regardless
of the donor and acceptor character, even for anionic dimers.
This correlation is not present when using the donor HOMO−
acceptor LUMO gap. We also show that exact exchange-hole

delocalization serves as a measure of delocalization error
(semilocal functionals predict systematically higher DIs), which
decreases as the charge transfer approaches one whole electron
in agreement with the known functional behavior for fractional
charges.
In this article, we demonstrate two main theses: (i) that

dispersion corrections accurately model halogen bonding
provided a base functional with low delocalization error is
used and (ii) that intermolecular delocalization indices can be
used to quantify both the strength of a halogen-bonding
interaction and the extent of delocalization error from the base
functional.

2. THEORY

In the following, we combine common density-functional
approximations in the context of density-functional theory
(DFT) with the exchange-hole dipole moment (XDM) model
of dispersion.35,36 XDM is a dispersion correction that allows
calculation of the atomic dispersion coefficients without
empirical parameters. These coefficients enter an asymptotic
pairwise expression for the dispersion energy:

∑ ∑= −
= >

−E C R f R( )
n

n
n

nXDM

6,8,10 A B

AB
AB AB

(1)

where the sum runs over all pairs of atoms, RAB is the
interatomic distance, and Cn are the XDM dispersion
coefficients. The dispersion energy in eq 1 is added to the
energy from the base functional to give the total energy:

= +E E Etotal base XDM (2)

The damping function f n attenuates the dispersion correction
at short interatomic distances:35,37,38
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and contains two adjustable parameters (a1 and a2) in
Rvdw,AB.

37,38 If the base functional gave an exact account of
the nondispersive contribution to the total energy, a1 and a2
would be physical quantities7 instead of adjustable parameters,
determining the shape of the damping function. In practice, the
damping function is used to correct errors from the base
functional, such as the delocalization error considered in this
article, as well as basis-set incompleteness.39 The parameters are
fitted to the Kannemann−Becke (KB) set,40,41 which does not
contain halogen-bonded or charge transfer dimers. XDM has
been shown to perform well for the calculation of noncovalent
binding energies in the gas-phase,7,42 as well as in condensed
phases.43−45

The other theoretical tool we use in this article is Bader’s
localization and delocalization indices46−50 (LIs and DIs), with
which we analyze and quantify intermolecular electron
delocalization. These indices are defined as integrals of
quantities related to the pair density, ρ(r1,r2), which gives the
probability of finding electrons at r1 and r2. The pair density can
be written as

ρ ρ ρ ρ= +r r r r r r( , ) ( ) ( ) ( , )1 2 1 2 xc 1 2 (4)

where the exchange-correlation density (ρxc) measures the
deviation of the pair density from the independent charge
distribution. The exchange-correlation density is integrated in
the regions associated with atoms A and B:
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∫ ∫ ρ= r r r rF(A, B) d d ( , )
A

1
B

2 xc 1 2 (5)

The atomic regions are defined as being encompassed by
zero-flux surfaces of the electron density, as in Bader’s
theory.51−53 F(A, B) measures the degree of correlation
between the electron distributions in both atoms, which we
normally refer to as interatomic “delocalization” or “electron
sharing”. The localization (λ) and delocalization (δ) indices are
defined as

λ = −F(A) (A, A) (6)

δ = − −F F(A, B) (A, B) (B, A) (7)

λ(A) measures the number of electrons localized within the
basin of atom A and δ(A, B) is the amount of electron
delocalization (sharing) between A and B. The average number
of electrons on A (N(A) = ∫ Adrρ(r)) can be partitioned using
these indices:

∑λ δ= +
≠

N(A) (A)
1

2
(A, B)

B A (8)

Perfectly localized electrons within atom A have λ(A) =
N(A), and δ(A, B) = 0 for any other atom B. F(A, B) and,
consequently, δ(A, B) and λ(A) are invariant with respect to
unitary orbital transformations.
The same-spin component of ρxc embodies the electron

correlation effects coming from the antisymmetry requirement
of the wave function (Fermi correlation). In the context of
wave function theory, Fermi correlation can be calculated
exactly at the Hartree−Fock (HF) level. The one-determinant
expression for the wave function reduces eq 5 to

∑= −F S S(A, B)
ij

ij ji
A B

(9)

where Sij
A are the atomic overlap matrices:

∫ ψ ψ= *r r rS d ( ) ( )ij i j
A

A
1 2 (10)

and the sum runs over the occupied molecular orbitals ψi.
Kohn−Sham DFT uses a monodeterminant representation

of noninteracting particles that reproduces the electron density
of the system. Hence, eqs 9 and 10 can be applied directly,
although the significance of the LIs and DIs differs because the
Kohn−Sham pair density (eq 4) has no direct physical
interpretation. Instead, δ and λ are quantities that measure
the delocalization of the exact exchange hole constructed from
the Kohn−Sham orbitals. Models of the exchange hole have
been used extensively in DFT as basic objects from which to
build exchange-correlation functionals.54 XDM, for instance, is
based on modeling the dipole−dipole interaction between
electron exchange-hole pair distributions on different atoms.
We illustrate delocalization error behavior and how it is

quantified by DIs using the traditional example17 of a single
electron and two infinitely separated energy wells. If the depth
of both wells is the same, symmetry requires that half an
electron resides in each. Otherwise, the electron is completely
localized in the deepest well with δ = 0. Figure 1 shows the DIs
calculated for alkali metal dimer cations, in which two infinitely
separated alkali metal atoms share a single valence electron,
using several functionals with varying degrees of exact
exchange. HF gives δ(A, B) correctly close to zero, but as the
functional incorporates more semilocal character, delocalization

error builds up in an almost-exact parabolic shape. Pure
functionals predict that the electron is delocalized almost half-
and-half between both atoms (charge 0.5, DI 0.5).
It will be shown in this article that halogen-bonded dimers

display similar behavior to that illustrated in Figure 1. Given a
noncovalent dimer composed of monomers A and B, we define
the intermolecular DI as the sum of all the DIs involving one
atom in A and one atom in B.

3. COMPUTATIONAL METHODS

To evaluate the performance of different XDM-corrected
functionals, three benchmark sets are used in this article: XB18,
XB51, and the Bauza ́ set. The XB18 and XB51 sets were
proposed by Kozuch and Martin12 and are composed of neutral
halogen-bonded dimers. XB18 comprises relatively simple
molecules, namely, all combinations between the HCN and
OCH2 electron donors and the following acceptors: HBr, HI,
Br2, I2, BrI, ClBr, ClI, FBr, and FI. The geometries for these
dimers were determined at the CCSD(T)/aug-cc-pVQZ level
(in the following, the aug-cc-pVXZ bases55−57 are represented
as aXZ for brevity). The binding energies were obtained by
extrapolating CCSD(T) energies calculated using aQZ and a5Z
basis sets. The XB51 set is an augmentation of the XB18 set
including, in addition to NCH and OCH2, the PCH and NH3

donors. The geometries of these were determined at the
ωB97XD/aTZ level and the energies were obtained using a
composite MP2/CCSD(T) approach.12

The set proposed by Bauza ́ et al.29 contains rather more
“extreme” forms of halogen bonding where anions act as
donors. As a result, the binding energies in this set are
considerably larger than in XB18 and XB51. This is a good test
to explore the limits of extreme delocalization error in
functionals and is also relevant for the DFT treatment of
electrides59 and solvated anions. The set also contains dimers
featuring chalcogen and pnictogen bonds, which are similar to
halogen bonds in that charge transfer is an essential
component. The reference data proposed by Bauza ́ et al. was
obtained at the CCSD(T)/aTZ level and presents considerable
basis-set superposition error. Consequently, we decided to
recalculate the binding energies for all of the halogen-bonded
systems in the set using CCSD(T) with the aQZ and a5Z basis
sets. The final binding energies were evaluated using Helgaker’s
two-point extrapolation to the complete basis-set (CBS) limit.60

As in our previous work,39,61 half of the counterpoise (CP)

Figure 1. Interatomic delocalization index (δ(A, B)) against Bader
charge for three alkali metal dimer cations. The points correspond to
different admixtures of exact exchange and B88 exchange. The points
closer to the center of the plot (charge = 0.5) have less exact exchange.
The black curve is a simple parabola with formula 2x(1 − x).
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correction was included since the full counterpoise correction
tends to overcompensate for basis-set incompleteness
effects.58,60,62,63 Note, however, that the CP correction is
relatively small because of the large size of the basis sets we
employed. The CCSD(T) calculations were all performed using
the Turbomole program.64 The results are shown in Table 1.
The geometries of all dimers in the Bauza ́ set are given in the
Supporting Information.
Binding energies for all of the halogen-bonding complexes

were computed with Gaussian0965 for selected functionals
using the aTZ (which is already close to the basis-set limit39 for
DFT-based methods) and the aQZ basis sets. The difference
between both basis sets in terms of mean average errors (MAE)
for the three benchmark sets is around or less than 0.1 kcal/mol
regardless of the functional. In the rest of the article, we report
only the aQZ results except where explicitly stated. Binding
energy calculations at the equilibrium geometry were carried
out by relaxing the geometry at the aTZ level and then running
a single point calculation at the final geometry using aQZ.
Relativistic effects have been shown to be important for
halogen-bonding energies and geometries,12 so we introduced
those using the aug-cc-pVTZ-PP and aug-cc-pVQZ-PP
pseudopotential and basis-set combinations66−68 for the Br, I,
and Pd atoms.
We show in the next section that delocalization error is

almost exclusively determined by the fraction of exact exchange
in the functional. Several popular exchange-correlation func-

tionals were chosen to explore the role of delocalization error
with fractions of exact exchange ranging from 0% to 50%.
Three generalized-gradient approximation (GGA) functionals
(BLYP,69,70 PBE,71 and PW86PBE71,72), three hybrid func-
tionals (B3LYP,70,73 PBE0,74 BH&HLYP75) and three range-
separated functionals (CAM-B3LYP76 and LC-ωPBE77,78 with
two choices of range-separation parameter, ω = 0.2 and 0.4)
were used. In particular instances where we examine in detail
the effect of the exact exchange component, we use hybrids
built using combinations of exact exchange and the BLYP,69,70

PBE,71 PW86PBE,71,72 and TPSS79 semilocal functionals.
These hybrids are composed of exact exchange (x fraction)
complemented with the semilocal exchange functional (1 − x)
and the correlation functional.
XDM dispersion energies were computed using the postg

program,7,80 and damping parameters for use with each base
functional were taken from previous work.7 Calculations with
the M06-2X functional,81 without XDM, were also performed
for comparison. Analysis of the Bader DIs was performed using
the aimall program.82 The DIs were calculated using the aug-cc-
pVTZ basis sets.

4. RESULTS AND DISCUSSION

4.1. Delocalization Error and Intermolecular Charge
Transfer. We first examine the effect of delocalization error on
the binding energies of halogen-bonded dimers by plotting the
electronic energy (E) as a function of donor−acceptor charge

Table 1. Calculated Binding Energies (kcal/mol) for the Bauza ́ Set Using CCSD(T) with the Indicated Basis Sets Plus
Counterpoise (CP) or Half the Counterpoise Correction58 (Ave)a

name aQZ a5Z CBS aQZ-CP a5Z-CP CBS-CP Ave-CBS

Cl−···ClF 42.64 43.47 43.97 42.16 43.19 43.85 43.91

Br−···ClF 41.60 42.22 42.63 41.09 41.96 42.59 42.61

Cl−···BrF 45.36 45.93 46.47 44.95 45.69 46.38 46.42

Br−···BrF 42.75 43.20 43.68 42.33 42.98 43.67 43.67

NH3···ClF 11.71 11.99 12.13 11.38 11.82 12.07 12.10

NH3···BrF 15.73 15.86 16.03 15.41 15.71 16.03 16.03

Cl−···SF2 30.66 31.21 31.56 30.15 30.94 31.49 31.52

Br−···SF2 25.24 25.56 25.79 24.74 25.35 25.81 25.80

Cl−···SeF2 40.51 40.91 41.29 39.47 40.08 40.63 40.96

Br−···SeF2 35.15 35.42 35.72 34.24 34.76 35.28 35.50

NH3···SF2 7.97 7.96 7.97 7.59 7.83 8.00 7.98

NH3···SeF2 13.82 13.66 13.57 12.46 12.67 12.89 13.23

Cl−···SCF2 9.33 9.50 9.56 9.10 9.38 9.52 9.54

Br−···SCF2 7.63 7.76 7.80 7.43 7.66 7.79 7.80

Cl−···SeCF2 13.83 13.76 13.70 13.27 13.40 13.52 13.61

Br−···SeCF2 11.45 11.37 11.29 10.93 11.04 11.15 11.22

NH3···SCF2 1.73 1.71 1.67 1.61 1.66 1.68 1.67

NH3···SeCF2 2.87 2.88 2.92 2.52 2.54 2.55 2.73

Cl−···SPF3 8.35 8.44 8.42 8.11 8.32 8.41 8.42

Br−···SPF3 6.71 6.78 6.76 6.50 6.68 6.75 6.76

Cl−···SePF3 15.60 15.60 15.64 15.10 15.16 15.26 15.45

Br−···SePF3 12.68 12.64 12.64 12.19 12.24 12.31 12.48

NH3···SPF3 1.49 1.46 1.42 1.37 1.41 1.42 1.42

NH3···SePF3 3.02 3.02 3.04 2.63 2.63 2.64 2.84

Cl−···PF3 20.99 21.22 21.41 20.53 20.97 21.33 21.37

Br−···PF3 15.59 15.65 15.74 15.19 15.47 15.73 15.73

Cl−···AsF3 34.14 34.30 34.43 33.09 33.61 34.06 34.25

Br−···AsF3 27.31 27.42 27.54 26.51 26.92 27.31 27.42

NH3···PF3 5.02 4.88 4.85 4.69 4.77 4.86 4.85

NH3···AsF3 10.03 9.71 9.45 8.85 9.02 9.18 9.31
aThe reference data we use in this work is the last column (Ave-CBS).
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transfer26,28 at infinite separation. Figure 2 shows a plot of this
quantity for two representative halogen-bonded complexes.
The plots are obtained using the energies of the neutral
molecules and ions, as well as their frontier orbital energies. Let
us use the Br−···BrF dimer as an illustrative example. For each
of the two monomers (Br− and BrF), we generate the fractional
charge plot that corresponds to the charge transfer process in
the dimer. Because Br− is the electron donor, we consider the
Br− → Br process, and BrF is the electron acceptor, so we plot
BrF → BrF−. In both cases, the energy versus fractional charge
q is written as a cubic spline:28

ε

ε

= Δ + − Δ −

+ Δ − −

E q E q E q

E q q q

( ) ( ) [( ) (1 )

( ) ] (1 )

0

1 (11)

where ΔE is the energy difference between the species with
N + 1 and N electrons, ε0 is the LUMO eigenvalue of the
species with N electrons and ε1 is the HOMO energy of the
species with N + 1 electrons. The E(q) of the separated
monomers are then added to give the energy as a function of
the extent of intermolecular charge transfer within the dimer.
The exact functional should give energies that are piecewise

linear functions, with derivative discontinuities at integer
electron numbers.83 Therefore, the energy as a function of
charge transfer should also be linear, with the minimum energy
point corresponding to the situation where the charge is fully
localized on the monomer with the greatest electron affinity.
Instead of correctly giving straight lines, GGA functionals
deviate from linearity owing to the overstabilization of

fractional charges. For hybrid functionals, as the amount of
exact exchange increases, the convexity of the fractional energy
decreases, and the curves become linear for a fraction around
50%, although this value depends on the system. If the exact
exchange component increases past that value, the fractional
energy curve becomes concave, resulting in spurious local-
ization (“localization error”).
It is important to note that the delocalization error behavior

of GGA and hybrid functionals is almost exclusively dependent
on the fraction of exact exchange in their composition. Figure 2
shows that BLYP (semilocal), B3LYP (20% exact exchange),
and BH&HLYP (50%) have almost exactly the same fractional
charge behavior as the corresponding PBE-based hybrids. The
same coincidence can be observed if one uses other semilocal
functionals as a base for the hybrids, for instance, PW86PBE,
BLYP, or TPSS. The corresponding figures can be found in the
Supporting Information.
In the particular case of halogen bonding, there are

essentially two fractional charge behavior regimes, as
exemplified by Br−···BrF and NCH···BrF in Figure 2. The
former category contains dimers with extremely good electron
donors, such as the anionic dimers in the Bauza ́ set. At their
equilibrium geometries, these dimers present higher charge
transfer and binding energies than the neutral dimers. The
defining characteristic is that the HOMO of the donor is higher
in energy than the LUMO of the acceptor, and as a
consequence, charge transfer occurs even when the monomers
are infinitely separated, a case similar to our previous results for
a solvated-electron model system.28 Even at infinite separation,

Figure 2. Energy versus fractional charge transfer plots for selected complexes at infinite separation: Br−···BrF (top) and NCH···BrF (bottom). The
zero of energy for each complex has been set as the energy of the right-hand side complex. The plots on the left show the fractional charge behavior
for several popular functionals. The plots on the right correspond to PBE with various fractions of exact exchange using a grayscale. The scale goes
from 0% (black) to 100% (light gray) in steps of 10%. The red curve corresponds to 50%.
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GGA functionals predict a density where the electrons are
shared between the monomers, with a charge transfer
corresponding to the minimum in Figure 2.
The fractional charge plots for the neutral halogen-bonded

dimers look like the NCH···BrF example in Figure 2. These
dimers present lower charge transfer at the equilibrium
geometry and lower binding energies. The plot shows that
there is no charge transfer at infinite separation because the
donor HOMO is lower in energy than the acceptor LUMO. In
this case, all functionals, even GGAs, give a better description,
with a small curvature and no minimum at fractional charges.
Hence, for charge transfer to occur, the monomers need to
approach each other such that the donor HOMO engages in an
orbital interaction with the acceptor LUMO.
It is unlikely that the failings of GGA functionals for the

calculation of binding energies of neutral halogen-bonded
complexes come from self-interaction error in the monomers,
as suggested by Steinmann et al.15 in the more general context
of charge-transfer complexes. Many-electron self-interaction
error is apparent in systems with fractional charges, and those
only occur at the dimer geometry. Also, indicators of charge
transfer behavior for neutral dimers based on the isolated
monomers, such as the donor HOMO-acceptor LUMO gap26

or the monomer electrostatic potential14 are limited for the

description of halogen bonds, because of the dramatic change
in electronic structure upon dimer formation.
Delocalization error in the dimer and the resulting

overstabilization of fractional charges explains the overbinding
tendency of GGA functionals for halogen bonds and the results
in the following section. Since GGA functionals spuriously
overbind the complexes, addition of a dispersion correction,
which will further increase the binding, degrades the results, as
noted by Kozuch and Martin.12 B3LYP also gives E(q) plots
with significant curvature, but LC-ωPBE and BH&HLYP are
more nearly linear and consequently give the lowest binding-
energy errors when paired with XDM dispersion. LC-ωPBE
with the default range-separation parameter (ω = 0.4) actually
gives the opposite curvature, characteristic of the “localization
error” seen in HF theory, and thus underestimates both the
degree of charge transfer and the binding in these complexes.

4.2. Benchmark of Dispersion-Corrected Functionals.
The mean errors (ME) and mean absolute errors (MAE) for all
functionals considered on the three benchmark sets are
reported in Table 2. In these results, we used the dimer
geometries at which the reference data was calculated (except
for the XB18 “opt.” data, for which the geometries were
relaxed). A representative plot showing the binding energy
errors for the individual dimers in the XB51 set is given in
Figure 3. A detailed list of all binding energy values obtained

Table 2. Mean Absolute Errors (MAE) and Mean Errors (ME) for the XB18, XB51, and Bauza ́ et al. Benchmark Sets Using the
Selected Functionalsa

XB18 XB51 Bauza ́ et al.

base XDM opt. base XDM base XDM

functional MAE ME MAE ME MAE ME MAE ME MAE ME MAE ME MAE ME

PBE 0.89 0.75 1.56 1.56 1.74 1.74 1.29 0.80 1.77 1.76 2.56 2.22 3.24 3.19

PW86PBE 0.76 0.61 1.45 1.45 1.51 1.48 1.10 0.56 1.54 1.52 1.97 1.13 2.22 1.96

BLYP 0.90 −0.81 1.17 1.17 1.17 1.17 1.44 −0.97 1.18 1.14 1.85 −1.02 1.68 0.92

PBE0 0.54 −0.38 0.49 0.41 0.68 0.67 0.83 −0.06 0.92 0.89 1.70 1.48 2.44 2.43

B3LYP 1.11 −1.11 0.39 0.34 0.54 0.54 1.22 −1.02 0.62 0.58 1.32 −0.63 1.18 0.96

BH&HLYP 1.52 −1.52 0.35 −0.34 0.21 0.17 1.33 −1.33 0.29 0.06 1.15 −0.97 0.67 0.66

M06-2X 0.24 −0.11 0.21 0.15 0.33 0.07 0.93 0.88

LC-ωPBE ω = 0.2 0.65 −0.50 0.47 0.42 0.49 0.41 0.89 −0.56 0.61 0.48 1.32 −0.09 1.15 0.85

LC-ωPBE ω = 0.4 1.41 −1.41 0.66 −0.66 0.66 −0.66 1.33 −1.32 0.61 −0.49 1.42 −1.19 0.95 −0.53
CAM-B3LYP 0.74 −0.73 0.35 0.25 0.35 0.25 0.90 −0.79 0.50 0.37 1.12 −0.63 0.70 0.65

aResults are shown for both the base and XDM-corrected functionals at the reference geometries. The “Opt.” column indicates that the geometries
were optimized using the XDM-corrected functional.

Figure 3. Binding energy errors for the XB51 set with a selected set of functionals. Dashed lines correspond to the base functionals and solid lines to
the XDM dispersion-corrected functionals. The dimers have been ordered from left to right by increasing reference binding energy.
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and plots showing the binding energy errors for the dimers in
the other two benchmark sets can be found in the Supporting
Information.
Table 2 shows that, on average, the PBE and PW86PBE

functionals overbind and BLYP underbinds halogen-bonded
complexes in all three sets. The MAEs are slightly under 1 kcal/
mol for the XB18 set, slightly larger than 1 kcal/mol for the
XB51, and close to 2 kcal/mol in the Bauza ́ set, with small
differences between the three GGA functionals. The MEs for
the three GGAs follow the known behavior of their respective
exchange functionals in representing the Pauli repulsive wall
between closed-shell systems. Namely, PW86PBE gives
repulsive energies between closed-shell systems comparable
to HF (the correct result) whereas PBE is overly attractive and
BLYP is too repulsive.40,43 Correspondingly, the MEs for the
XB18 show that PBE overbinds by 0.75 kcal/mol, PW86PBE
overbinds less than PBE (0.61 kcal/mol), and BLYP under-
binds by 0.81 kcal/mol. The same trend is present in the other
sets.
When the XDM dispersion correction is applied, all GGA

functionals overbind. This suggests that, while erroneous Pauli
repulsive behavior at the base functional level can be corrected
by parametrizing the damping function, errors coming from
delocalization error can not. Incorporating dimers with sizable
orbital interactions in the parametrization set would only
degrade the performance of the dispersion-corrected functional
in dimers where the binding energy has a lesser charge-transfer
component.
Regarding the hybrid functionals, the performance of XDM-

corrected functionals improves with increasing exact exchange,
which is a typical indication of delocalization error.26 Let us
consider BLYP, B3LYP (20% exact exchange), and BH&HLYP
(50% exact exchange), which form a sequence with decreasing
delocalization error (see previous section), and the XB18 set.
The unadorned functionals are, on average, overly repulsive,
and the MEs increase in absolute value with the amount of
exact exchange (−0.81 kcal/mol for BLYP, −1.11 for B3LYP,
and −1.52 for BH&HLYP). In contrast, the corresponding
dispersion-corrected functionals are overbinding for BLYP and
B3LYP, and underbinding for BH&HLYP. The MAE is larger
for BLYP-XDM (1.17 kcal/mol) than for B3LYP-XDM (0.39
kcal/mol) and BH&HLYP-XDM (0.35 kcal/mol). B3LYP-
XDM gives a MAE almost as low as BH&HLYP for the XB18,
but not for the XB51 and Bauza ́ sets, and the MAE for the
XB18 with relaxed geometries is also better in BH&HLYP. This
points to a fortuitous error cancellation in the particular case of
B3LYP-XDM on XB18.
BH&HLYP-XDM, which has the lowest delocalization error

of all three functionals discussed above, is relatively accurate on
average. The MAE on the XB18 is slightly larger than M06-2X
(0.22 kcal/mol), but comparable to the average errors obtained
for other noncovalent interactions using the same functional.
For instance, the MAEs in Table 2 are 0.35 (XB18), 0.29
(XB51), and 0.67 (Bauza)́ kcal/mol, comparable to the MAEs
for other sets lacking charge transfer complexes: 0.28 (KB
set41), 0.47 (S2284), and 0.31 (S6685) kcal/mol.7 The same
cannot be said for B3LYP (XB18:0.39, XB51:0.62, Bauza:́1.18,
and KB:0.23, S22:0.31, S66:0.22 kcal/mol7) or BLYP
(XB18:1.17, XB51:1.18, Bauza:́1.68, and KB:0.27, S22:0.22,
S66:0.19 kcal/mol7).
These observations are analogous to those for hydrogen-

atom transfer barriers,7 and point to the presence of
delocalization error. Consequently, while the base functionals

alone give reasonably accurate results in some cases, they rely
on error cancellation between delocalization error and neglect
of dispersion interactions, and their use is not recommended.12

The same trends are observed for the other sets (XB51 and
Bauza)́ and for the PBE/PBE0 pair. We note that the statistics
for B3LYP-XDM and PBE0-XDM on the XB18 and XB51 are
similar to those reported by Kozuch and Martin12 using the
D230 and D331 dispersion corrections. Specifically, the MAEs
for XB18 are 0.64 (B3LYP-D3), 0.22 (B3LYP-D2), 0.62
(PBE0-D3), and 0.36 (PBE0-D2) kcal/mol to be compared to
0.39 (B3LYP-XDM) and 0.49 (PBE0-XDM) kcal/mol. The
MAEs for XB51 reported by Kozuch et al. are 0.92 (B3LYP-
D3), 0.54 (B3LYP-D2), 0.98 (PBE0-D3), and 0.74 (PBE0-D2),
similar to those reported in Table 2: 0.62 (B3LYP-XDM) and
0.92 (PBE0-XDM) kcal/mol. This indicates that trouble with
base-functional delocalization error is also present when using
other dispersion corrections.
From Table 2, XDM-corrected range-separated functionals

give improved performance with respect to GGA-XDM
functionals, but the results are sensitive to the range-separation
parameter. Range-separated functionals use a semilocal
exchange functional to describe electron−electron interactions
at short distances, and exact exchange at long-range. The range-
separation parameter (ω) controls the onset of the short and
long-range regimes. The ω → 0 and ω →∞ limits correspond
to the semilocal exchange functional and exact exchange,
respectively. CAM-B3LYP has 65% long-range exact exchange
and ω = 0.33, whereas LC-ωPBE has 100% long-range exact
exchange and ω = 0.4. Table 2 shows that LC-ωPBE-XDM
with ω = 0.2 overbinds on average (for the XB18, MAE = 0.47
kcal/mol, ME = 0.42 kcal/mol), while LC-ωPBE-XDM with ω

= 0.4 underbinds (MAE = 0.66 kcal/mol, ME = −0.66 kcal/
mol). The optimal ω for bare LC-ωPBE seems to be between
0.2 and 0.4 in these systems. However, the optimal range-
separation parameter depends on the system size,86 which
limits the applicability of tuning the ω according to these
results.
BH&HLYP-XDM and M06-2X give the best performance

when the three sets are considered, with the lowest mean
absolute errors (MAEs) and mean errors (MEs) near zero. In
particular, BH&HLYP-XDM performs well even for the more
pathological cases in the Bauza ́ set, where there is a great deal of
charge transfer between the monomers, as well as for the
chalcogen and pnictogen-bonded dimers. The performance of
M06-2X for the XB51 (MAE86 0.33 kcal/mol) and particularly
for the Bauza ́ set (MAE86 0.93 kcal/mol) is not as good as
BH&HLYP-XDM. The latter is probably caused by the dimers
in the Bauza ́ set being chemically further from the M06-2X
parametrization set than those in the XB18 and the XB51 sets.
As stated before, the low BH&HLYP-XDM MAEs are

significant because the XDM parametrization set does not
contain systems with as much charge transfer as halogen-
bonded dimers. Despite this, BH&HLYP-XDM attains
performance for the halogen-bonded dimers comparable to
other systems containing only hydrogen-bonded and dis-
persion-dominated dimers, which present far less charge-
transfer behavior. By using a base functional that is relatively
free from delocalization error, such as BH&HLYP, the XDM
dispersion correction yields binding energies with errors that
are not different on average from other noncovalent
interactions with a lesser charge transfer component. As we
will see, the same effect can be observed for hybrids constructed
using other semilocal functionals. The average errors for the
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halogen-bonding set are only comparable to the parametriza-
tion set when the amount of exact exchange in the functional is
close to 50%, regardless of the semilocal functional employed.
In order to further confirm the role of delocalization error in

the overbinding behavior of dispersion-corrected GGA func-
tionals, we consider now a collection of hybrid functionals built
using the BLYP, PW86PBE, PBE, and TPSS functionals, and
fractions of exact exchange from 0% to 100% in 10% steps. The
MAEs of these functionals for the XB18 are shown in Table 3.

For every hybrid, we determined the damping function
parameters by fitting to the Kanemann-Becke set40,43 (KB),
which is the usual procedure in XDM. The KB set does not
contain halogen-bonded or charge transfer complexes. The
corresponding dispersion-corrected functionals are then applied
to the XB18 halogen-bonded set. We can see in Table 3 that all
pure GGA functionals show very large errors, corresponding to
a strong overestimation of the dimer binding energies. As the
amount of exact exchange increases, the MAE decreases, and it
reaches a minimum between 40% and 50%, regardless of the
semilocal functional used. The adequacy of a given semilocal
functional naturally depends on other considerations such as
the position of the Pauli repulsive wall,7,40 but it is only at or
around 50% exact exchange that halogen-bonded dimers are
treated at the same accuracy level as other noncovalent dimers
where charge-transfer effects are a less important contribution
to the total binding energy.
Figure 4 shows the effect of building functionals with

increasing fractions of exact exchange using BLYP and PBE as
the semilocal components on a particular halogen-bonded
dimer (the linear complex NCH···FI). All BLYP-based hybrids
underbind with respect to the reference. B88, the exchange
component of BLYP, is repulsive compared to HF, so when the
fraction of exact exchange increases there is a cancellation of
effects between decreasing delocalization error and less Pauli
repulsion. Despite this, the former dominates in the 0% to 50%
range: the hybrid becomes less binding and the equilibrium
distance increases as the amount of exact exchange increases.
The same effect is observed in the 0% to 50% curves for PBE,
although in this case the exchange component becomes more
repulsive with increasing exact exchange fraction, leading to a

more marked displacement of the dissociation curves. Past the
50% fraction, localization error sets in and binding increases
again.
The global effect of the dispersion correction is to shift all

curves down by an amount that is small relative to the binding
energies from the base functional. In the case of BLYP, the
agreement with the reference distance and binding energy for
the half-and-half dispersion-corrected functional is almost
perfect. Even though the result for unadorned BLYP is also
quite good, the statistics in Table 3 show that the result for this
particular dimer is not generalizable, whereas the good
performance of the half-and-half functional is consistent across
the entire benchmark set. PBE underestimates the equilibrium
distance with or without dispersion correction, and the
dispersion-corrected half-and-half PBE hybrid slightly over-
estimates the binding energy. This is not surprising given that
unadorned PBE considerably understimates Pauli repulsion
relative to BLYP7 and therefore the performance for other
noncovalent interactions is worse (MAE = 0.48 kcal/mol on
the KB set) compared to BLYP (0.28 kcal/mol). Despite this,
Table 3 shows that it is only the half-and-half PBE functional
that consistently achieves a good performance for all dimers in
the XB18 set, comparable to the MAE statistics for the
parametrization set.
Therefore, we can conclude that the overbinding behavior

observed in halogen-bonded and other charge-transfer dimers is
caused by delocalization error, and should be corrected at the
base functional level, and it is not the dispersion correction that
is responsible for this failure, as suggested before.12,29 It is
significant that BH&HLYP has also been proposed as a
functional with very low self-interaction error in the context of
charge-transfer excitations,19 and that M06-2X (which performs
well for dispersion-dominated and charge-transfer dimers)
contains a similar amount of exact exchange (54%).
To conclude, we consider the ability of our chosen

functionals to model the dimer geometries and the binding
energies upon relaxation using the reference geometries for the
XB18 set, which were calculated at the CCSD(T) level. Table 4
shows the errors in the calculated donor−acceptor atom−atom
distances for all dimers in the XB18 set. The behavior of the
distance MAEs is somewhat parallel to that of the geometry-
relaxed binding energies in Table 2. The error is larger for GGA
functionals, decreases for the PBE0 and B3LYP hybrids, and is
virtually zero for BH&HLYP and small for M06-2X. This is
reassuring because, even though they are of critical importance,
geometries are not used in XDM parametrizations. The table
shows that, by minimizing delocalization error at the base
functional level, the geometries of halogen-bonded dimers are
more accurately represented.

4.3. Intermolecular Delocalization Indices. Given the
impact that delocalization error has on noncovalent binding
energies, and the likelihood that it affects any noncovalent
interaction in which CT is important, we aim to develop a
quantitative indicator for charge transfer and delocalization
error effects. To be useful, this index should (i) correlate with
the total binding energy, (ii) be sensitive to functional
delocalization error, and (iii) be valid for any donor−acceptor
combination. The index should be based on the overlapping
dimer, rather than the isolated monomers. The reason is that, in
constrast to the dimer at its equilibrium geometry, there is no
charge transfer between infinitely separated monomers (see
Section 4.1).

Table 3. Mean Absolute Error (MAE, in kcal/mol) of Hybrid
Functionals Built Using the BLYP, PW86PBE, PBE, TPSS
Semilocal Functionals, and the Amount of Exact Exchange
Given in the %EXX Column for the XB18 Halogen-Bonding
Benchmark Set12 (Described in the Text) and the 49-Dimer
Kannemann−Becke Set Used for the XDM
Parametrization40,41

BLYP PW86PBE PBE TPSS

%EXX XB18 KB XB18 KB XB18 KB XB18 KB

0 1.20 0.28 1.37 0.39 1.56 0.48 1.26 0.36

10 0.74 0.23 1.03 0.34 1.02 0.43 0.82 0.33

20 0.38 0.21 0.50 0.33 0.64 0.40 0.53 0.31

30 0.38 0.21 0.82 0.33 0.77 0.39 0.74 0.30

40 0.23 0.25 0.36 0.34 0.35 0.39 0.42 0.31

50 0.35 0.31 0.53 0.38 0.48 0.42 0.61 0.33

60 0.49 0.40 0.76 0.42 0.70 0.45 0.82 0.38

70 0.59 0.51 0.96 0.48 0.90 0.50 1.05 0.43

80 0.65 0.64 1.14 0.55 1.10 0.56 1.24 0.50

90 0.68 0.77 1.28 0.63 1.26 0.63 1.40 0.58

100 0.69 0.92 1.40 0.71 1.40 0.71 1.53 0.66
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The most obvious indicator of CT is the amount of density
that transfers from the donor to the acceptor at the dimer
geometry, as measured by population analysis techniques. We
have studied two possibilities: Hirshfeld87 and Bader51 atomic
partitionings. Based on data for the XB18 set, the extent of
charge transfer is heavily dependent on the choice of atomic
partitioning and, more importantly, the correlation of the
charge transfer with the binding energies is poor. Conversely,
the DI for the halogen-bonded dimers in Figure 5 correlate well
with the reference binding energies, suggesting that the binding
in these systems is better described in terms of orbital

interactions and electron sharing rather than charge transfer. In
addition to correlating with the binding energies, the DIs are
also sensitive to delocalization error and functionals with
increased delocalization error give higher DI values. BH&HLYP
and LC-ωPBE, which have less delocalization error, give the
lowest DIs of all the functionals, and the strongest correlation
with the reference binding energies (linear for NCH, slightly
concave for OCH2). Hartree−Fock, which is known to be
affected by localization error, underestimates the DIs compared
to BH&HLYP.
Figure 6 shows a plot of the DIs from all functionals against

those of BH&HLYP for the dimers in all three benchmark sets.
The spread is found to be largest at intermediate DI values and,
as integer values are approached, which corresponds to an
almost-complete charge transfer situation in the anionic dimers,
delocalization error decreases. The curvature and the deviation
from BH&HLYP increases with the amount of delocalization
error from the functional, in a remarkable parallel with the
fractional charge plots in Section 4.1 (Figure 2). Hartree−Fock
shows the characteristic localization error and curves down-
ward, in a convex shape. This result is reasonable because, as
indicated before, delocalization error is more important for
fractional charge situations. The spread of DIs for functionals
with varying amounts of exact exchange can be used as
indicator for delocalization error.
Lastly, we consider whether there is a universal correlation

between intermolecular DIs and binding energies in halogen
bonding. A correlation between binding energy and distance
has been recently reported by Tawfik and Donald.88 In

Figure 4. Dissociation energy curves (in kcal/mol) for the linear NCH···FI complex using hybrids built on the BLYP (top) and PBE (bottom)
semilocal functionals. The plots on the left show the curves for the base functional alone, and the plots on the right show the results for the
corresponding dispersion-corrected functionals. The abscissa gives the distance between the donor (N) and the acceptor (I) atoms, in Å. In each
plot, the black curve represents the pure GGA functional and the lightest gray is HF plus the corresponding correlation functional. The grayscale
represents intermediate fractions in 10% steps, with a lighter color corresponding to a higher percentage of exact exchange. The 50% exact exchange
functional is represented by the red curve. For every energy curve, the minimum is marked with a blue dot. The green square represents the
reference (CCSD(T)) distance and binding energy.

Table 4. Mean Absolute Error (MAE) and Mean Error (ME)
in the Calculated Intermolecular Distances for Different
Functionals and the XB18 Seta

MAE ME

PBE 0.135 −0.135
PW86PBE 0.104 −0.090
BLYP 0.095 −0.095
PBE0 0.082 −0.078
B3LYP 0.050 −0.049
BH&HLYP 0.006 0.001

M06-2X 0.020 −0.002
LC-ωPBE ω = 0.2 0.070 −0.058
LC-ωPBE ω = 0.4 0.038 0.011

CAM-B3LYP 0.038 −0.038
aAll functionals are XDM-corrected except M06-2X. The intermo-
lecular distance is taken as the distance between the donor and the
acceptor atom. All units are angstrom.
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Figure 7, we plot the BH&HLYP DIs against the reference
binding energies for the three benchmark sets. A correlation
between DIs and binding energies is clear and mostly
independent of the donor and acceptor identity. The results
can be fit to a function of the form δ = aBEn with a = 0.0987
and n = 0.6123. There are two outliers: all complexes with PCH

donors and the Br2−H···Li dimer. The PCH donor curve has a
steeper slope probably because of the larger size of the P atom.
More delocalization is needed to achieve a given binding energy
because the acceptor is farther away from the donor. Br2−H···
Li (from the miscellaneous set in Figure 6, at BE around 23
kcal/mol and 1.10 DI) is an outlier because the structure of this
dimer is more correctly represented as Br···Br−H···Li, with a
H···Br distance of only 1.63 Å (to be compared to the covalent
distance in the HBr molecule, 1.42 Å). Although further study
is required, the DIs seem to be a reliable descriptor of halogen
bonding.

5. CONCLUSIONS

In this article, we have shown that a pairwise dispersion
correction (the exchange-hole dipole moment model, XDM)
can be used for modeling halogen bonds provided the base
functional gives a correct description of the nondispersive part
of the interaction. In particular, we have demonstrated that
halogen bonding is greatly affected by delocalization error from
the base functional, which is particularly severe in semilocal
functionals, and results in a gross overestimation of the binding
energy when the dispersion correction is applied. However, if
the delocalization error in the base functional is minimized,
XDM obtains high accuracy for halogen bonding, similar to that
achieved for other noncovalent interactions with less charge
transfer. In particular, by using hybrid functionals with 50%
exact exchange, the average error in the calculation of halogen-
bonded binding energies is similar to other noncovalent dimers
with less or no charge transfer effects. This observation applies
regardless of the semilocal functional used to build the hybrid
functional.
By studying three benchmark sets comprising halogen-

bonded dimers (XB18, XB51) as well as more general charge
transfer complexes (Bauza ́ et al.), we have shown that
BH&HLYP-XDM in particular gives excellent binding energies
for halogen-bonded systems, with average errors comparable to
those obtained for noncovalent dimers with far less charge
transfer, and similar to M06-2X. In contrast to M06-2X,
however, the good performance also extends to cases with
extreme charge transfer, such as the anionic dimers proposed by
Bauza ́ et al., which may have relevance in the modeling of
noncovalent anionic systems in density-functional theory.

Figure 5. Intermolecular Bader delocalization indices as a function of
reference binding energies (kcal/mol) for the XB18 set with selected
functionals. The top panel represents the data for the dimers with the
NCH donor, and the dimers with the OCH2 donor are represented in
the bottom panel.

Figure 6. Intermolecular delocalization index computed using selected
functionals versus the BH&HLYP values for the XB18, XB51, and
Bauza ́ sets.

Figure 7. Intermolecular delocalization index computed using
BH&HLYP as a function of the reference binding energies for all of
the halogen-bonded complexes (XB18, XB51, and Bauza ́ sets).
Different donors are represented by different colors and symbols.
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In addition, we have shown that intermolecular delocalization
indices, as defined in Bader’s theory, provide a quantitative
measure of intermolecular orbital interactions in halogen
bonding. Intermolecular DIs display an excellent correlation
with the binding energies of halogen-bonded dimers, even at
the very high values obtained for the anionic dimers. The
intermolecular delocalization indices are also sensitive to
delocalization error from the base functional: the spread in
DI values for the same dimer using functionals with varying
amounts of exact exchange can be used as a measure of
delocalization error. Although more study is required, we are
confident that the ability of DIs to detect delocalization error
will translate to other intermolecular interactions, such as
hydrogen bonds, where the intermolecular charge transfer
component is not negligible.
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(2) Cohen, A. J.; Mori-Sańchez, P.; Yang, W. Chem. Rev. 2011, 112,
289.
(3) Burke, K. J. Chem. Phys. 2012, 136, 150901.
(4) Becke, A. D. J. Chem. Phys. 2014, 140, 18A301.
(5) Johnson, E. R.; Mackie, I. D.; DiLabio, G. A. J. Phys. Org. Chem.
2009, 22, 1127.
(6) DiLabio, G. A.; Otero-de-la Roza, A. Rev. Comp. Chem. 2014,
arXiv, 1405.1771.
(7) Otero-de-la Roza, A.; Johnson, E. R. J. Chem. Phys. 2013, 138,
204109.
(8) Lommerse, J. P. M.; Stone, A. J.; Taylor, R.; Allen, F. H. J. Am.
Chem. Soc. 1996, 118, 3108−3116.
(9) Metrangelo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Acc. Chem.
Res. 2005, 38, 386−395.
(10) Politzer, P.; Murray, J. S.; Clark, T. Phys. Chem. Chem. Phys.
2010, 12, 77487757.
(11) Rezac, J.; Riley, K. E.; Hobza, P. J. Chem. Theory Comput. 2012,
8, 4285−4292.
(12) Kozuch, S.; Martin, J. M. L. J. Chem. Theory Comput. 2013, 9,
1918−1931.

(13) Pinter, B.; Nagels, N.; Herrebout, W. A.; De Proft, F. Chem.
Phys. Phys. Chem. 2013, 19, 519−530.
(14) Clark, T.; Hennemann, M.; Murray, J. S.; Politzer, P. J. Mol.
Model. 2007, 13, 291−296.
(15) Steinmann, S. N.; Piemontesi, C.; Delacht, A.; Corminboeuf, C.
J. Chem. Theory Comput. 2012, 8, 1629−1640.
(16) Ruiz, E.; Salahub, D. R.; Vela, A. J. Chem. Phys. 1996, 100,
12265−12276.
(17) Zhang, Y. K.; Yang, W. T. J. Chem. Phys. 1998, 109, 2604−2608.
(18) Tozer, D. J. J. Chem. Phys. 2003, 119, 12697−12699.
(19) Dreuw, A.; Weisman, J. L.; Head-Gordon, M. J. Chem. Phys.
2003, 119, 2943−2946.
(20) Ruzsinszky, A.; Perdew, J. P.; Csonka, G. I.; Vydrov, O. A.;
Scuseria, G. E. J. Chem. Phys. 2006, 125, 194112.
(21) Perdew, J. P.; Zunger, A. Phys. Rev. B 1981, 23, 5048.
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