High-field multinuclear solid-state nuclear magnetic resonance (NMR) and first principle calculations in MgSO4 polymorphs

Pallister, Peter J.; Moudrakovski, Igor L.; Ripmeester, John A.
High field multinuclear solid state NMR and first principle calculations in MgSO₄ polymorphs

Peter J. Pallister, Igor L. Moudrakovski, and John A. Ripmeester

a Steacie Institute for Molecular Sciences, National Research Council, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
b Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6

* Author to whom correspondence is to be addressed

E-mail: Igor.moudrakovski@nrc-cnrc.gc.ca
Abstract

A combination of solid state NMR and first principles calculations was applied to obtain 17O, 25Mg and 33S NMR parameters for two polymorphs of anhydrous magnesium sulfate. Working at the very high magnetic field of 21.14 T results in a dramatic improvement of resolution through a reduction of effects of quadrupolar interactions and significant improvement in sensitivity. Experimental 25Mg and 33S spectra are dominated by quadrupolar interactions with the quadrupolar parameters unique for each polymorphs. In the case of 17O, there is a substantial contribution of the chemical shift anisotropy. The use of multiple-quantum MAS (MQMAS) experiments allows the resolution of distinct oxygen species and assignment of signals in the experimental 17O spectra. Chemical shielding constants and quadrupolar parameters for all three nuclei were calculated using plane wave pseudo-potential density functional theory as implemented in the CASTEP computational package. The calculated NMR parameters are in very good agreement with the experimental results and help in signal assignment of the 17O spectra. The results suggest applicability of such a combined computational – experimental solid state NMR approach for the refinement of the crystallographic data.

Keywords: Multinuclear Solid State NMR, MgSO$_4$ polymorphs, 17O, 25Mg, 33S, Chemical Shift Anisotropy, Electric Field Gradient, DFT Calculations.
Introduction

Recent developments in NMR instrumentation, especially ultrahigh field NMR magnets, combined with advances in computation of NMR parameters, significantly broadens the scope of Solid State NMR spectroscopy of materials. These advances are especially significant in studies concerned with low-γ, low natural abundance and quadrupolar nuclei. Another modern development that makes SS NMR an even more powerful tool in materials research is Quantum Chemical Calculations of NMR parameters. The complicated nature of interactions in solid state NMR poses some serious challenges in the analysis of spectral data and the accurate extraction of shielding and quadrupolar parameters. Correct interpretation of the experimental spectra may require some elaborate quantum mechanical calculations and spectral simulations. First-principles calculations may well complement experimental data and help in interpretation and assignments of the spectra. Recent development of the gauge including projector augment wave (GIPAW) formalism, implemented within the CASTEP computational package, is particularly useful for solid state NMR. Several recent studies have demonstrated that highly accurate evaluation of SS NMR parameters is possible, with most examples coming from Earth sciences and silicates research. Thanks to the availability of more user-friendly quantum chemical software and advances in computational hardware, today this task can be accomplished as never before.

In the current study we explore a combination of experimental multinuclear Solid State (SS) NMR at very high magnetic field of 21.14 T with quantum-mechanical
computations to study two polymorphs of anhydrous magnesium sulphate. It is considered that magnesium sulfates are important planetary rock-forming materials in our solar system.10,11 Specifically, MgSO\textsubscript{4} is considered to be an important mineral in putative carbonatite lavas on Venus.10 In the outer solar system, MgSO\textsubscript{4} may well be the most important leachate from chondritic materials.11 In many respects the importance of magnesium sulfates as a planetary mineral resembles those of magnesium ortho- and meta-silicates in the Earth’s mantle, the latter being recently studied comprehensively with a combination of multinuclear SS NMR and first principles computations.9

Below about 800 K anhydrous magnesium sulfate is known to co-exist in two polymorphic forms. The α-phase can be grown from a solution of MgO in H\textsubscript{2}SO\textsubscript{4}. The structure of the α-form is orthorhombic with space group \textit{Cmcm} (\textit{Z} = 4) and unit-cell dimensions \(a = 5.182 \text{ Å}, b = 7.893 \text{ Å}, c = 6.506 \text{ Å} \).12 The β-MgSO\textsubscript{4} can be formed either by thermal dehydration of MgSO\textsubscript{4} hydrates or by heating α-MgSO\textsubscript{4} to 868 K13 followed by quenching to room temperature. The structure of β-form is orthorhombic with space group \textit{Pbnm} and unit-cell dimensions \(a = 4.742 \text{ Å}, b = 8.575 \text{ Å}, c = 6.699 \text{ Å} \).14 After quenching, β-MgSO\textsubscript{4} persists in this form indefinitely. The polymorphs are structurally very similar and consist of edge-sharing MgO\textsubscript{6} octahedra arranged in infinite ribbons and cross-linked by sheets of pseudo-close-packed SO\textsubscript{4} tetrahedra. The latter, however, are oriented in α- and β-forms in different planes. The structural similarities and differences of α- and β-forms were considered in some detail in a recent neutron powder diffraction study.15 One needs to emphasise that due to the difficulties of growing single crystals of highly hygroscopic MgSO\textsubscript{4}, the earlier structures were solved from X-Ray powder data
and were later refined using powder neutron diffraction. The first single crystal study of β-MgSO$_4$ was published only in 2007, soon after the neutron powder diffraction refinement for both α- and β-polymorphs.16

MgSO$_4$ poses some serious solid state NMR challenges. All three nuclei are quadrupolar, and their SS NMR signals are broadened by quadrupolar interactions.17,18,19 Two of the three nuclei (25Mg and 33S) have very low gammas, and only one of them has a moderate natural abundance (25Mg - 10%, 33S – 0.75%, 17O – 0.037%).20 The combination of the above results in a very poor NMR receptivity (see Table 1). In this work we report the results of a solid state NMR study using all three nuclei in the α- and β-forms of anhydrous magnesium sulfate at a magnetic field of 21 T. At this very high magnetic field the effects of the quadrupolar interactions are reduced significantly17,18 and the sensitivity and accuracy in determining the NMR parameters improve dramatically. We demonstrate that for all three nuclei the quadrupolar effects dominate the NMR spectra. A complete analysis of experimental SS NMR parameters has become possible with the use of the CASTEP3,4 computational package.

It is always of great interest to support known structural data obtained through X-ray or neutron diffraction methods with additional techniques. The use of a short-range order interaction technique such as NMR is expected to complement the existing structural data obtained through previous diffraction methods. As well, with the aid of computation, an attempt to distinguish polymorphs with the same chemical composition through SS-NMR can be accomplished. The possibility of assessing the structural details
Experimental Part

Materials. Both MgSO₄ polymorphs studied in this work were synthesized as \(^{17}\)O enriched compounds. \(^{17}\)O enriched sulfuric acid was prepared by reacting sulfuryl chloride SO₂Cl₂ (Aldrich) with H₂\(^{17}\)O (Cambridge Isotope Laboratories, Inc., 17.8% enrichment). The sulfuric acid obtained was added in about 20 mol. % excess to a small quantity (~ 0.3 g) of freshly calcined MgO (Aldrich) in a small Pt crucible and the slurry was left to evaporate over a hot plate (~ 300°C). After complete evaporation of the liquid sulphuric acid the crucible was put in an oven and kept there at a constant temperature of 450 °C overnight. The X-ray diffraction pattern of the resulting powder was that of α-MgSO₄.\(^{12,15}\) The β-phase of MgSO₄ was produced by heating the α-phase at 650°C.\(^{13}\) Because of the dilution of \(^{17}\)O in the course of synthesis, the final enrichment was estimated to be in the range of 5-7%.

NMR spectroscopy. All NMR measurements were performed on a Bruker Avance-II 900 MHz instrument (magnetic field of 21.14 T) at the National Ultrahigh Field NMR Facility for Solids in Ottawa. Larmor frequencies for \(^{17}\)O, \(^{25}\)Mg and \(^{33}\)S were 122.02, 55.1 and 69.09 MHz, respectively. Static powder spectra were obtained on a homebuilt 7 mm solenoid probe. A spin-echo pulse sequence optimized to reproduce accurately the powder line shapes\(^{21}\) and a QCPMG sequence\(^{22}\) were used in static experiments. Between 250 and 2000 scans were acquired for all nuclei with relaxation delays ranging from 10 to
40s. A Dual Frequency Sweep (DFS) sensitivity enhancing technique23 was used in some of the experiments, particularly with 33S. The optimal relaxation delays for each compound and nucleus were found from 3-4 short (16-32 scans) runs. The Magic Angle Spinning (MAS) experiments were performed using Bruker 4 mm (17O and 25Mg) and 7 mm (33S) MAS probes with dry nitrogen as a carrier gas. Two-dimensional MQMAS experiments on 17O were performed using phase-modulated split-t\textsubscript{1} pulse sequence24,25 with rotor synchronization. The spectra were externally referenced to neat H\textsubscript{2}O (17O, \(\delta = 0\) ppm), 1M solution of Mg(NO\textsubscript{3})\textsubscript{2} (25Mg, \(\delta = 0\) ppm), and 2M solution of Cs\textsubscript{2}SO\textsubscript{4} (33S, \(\delta = 333.0\) ppm from CS\textsubscript{2}26).

Spectral simulations. Analytical simulations of experimental spectra were carried out with the WSolids27 and DMFit28 simulation packages. In all simulations we first fitted the MAS spectra, which provided the isotropic chemical shifts \(\delta_{iso}\), quadrupolar constants \(C_Q\) and quadrupolar asymmetry parameter \(\eta_Q\). These parameters were subsequently used in simulations of static powder pattern. Special attention was given to reproducing the spectral discontinuities and shoulders in fitting the spectra.

Quantum Chemical Calculations. All calculations were performed using the CASTEP4 density functional theory code using the GIPAW3 algorithm. The version used in this work is integrated within the Accelrys Materials Studios 4.4 suite. The computations use the generalized gradient approximation (GCA) and Perdew-Burke-Ernzerhof (PBE) functional,29,30 and the core–valence interactions were described by ultrasoft pseudopotentials.3(b) Integrations over the Brillouin zone were done using a Monkhorst-Pack grid with a k-point spacings generally being less than 0.04 Å-1.31 Crystallographic data used in the calculations were taken from the literature and the corresponded
references are given in the text. The calculations produce the absolute shielding tensor \(\sigma \), quadrupolar coupling constant \(C_Q \) and asymmetry \(\eta_Q \). The later two parameters can be compared to the experimentally measured \(C_Q \) and \(\eta_Q \) directly. In the case of \(\sigma \), however, some conversion needs to be done before comparing them with the experimentally measured chemical shifts. The isotropic chemical shift \(\delta_{iso} \) relates to the isotropic shielding \(\sigma_{iso}=1/3 \text{Tr}\{\sigma\} \) as \(\delta_{iso} = - (\sigma_{iso} - \sigma_{ref}) \), where \(\sigma_{ref} \) is the isotropic shielding calculated on the reference material with well defined structure and known chemical shift. The references used for the nuclei studied in this work are as follows: For \(^{25}\text{Mg}\), the reference shielding obtained from a correlation of the calculated shielding constants and the experimental chemical shifts in numerous magnesium compounds, with \(\sigma_{iso}=-1.072(\pm0.036)\times \delta_{iso}+566.06(\pm0.99) \). For \(^{33}\text{S}\), the reference shielding is again based on a correlation where \(\sigma_{ref}(^{33}\text{S}) = 434.1 \text{ ppm} \) (updated data from Ref. 33). For \(^{17}\text{O}\), the chemical shielding was referenced to the well documented O1 site in forsterite as in Ref. 9, with \(\sigma_{ref}(^{17}\text{O}) \) value of 255.0 ppm.

Experimental Results and Discussion

Structural Details of System Studied

Table 2 shows the structural parameters for \(\alpha\)-MgSO\(_4\) and both reported structures of \(\beta\)-MgSO\(_4\) from the most recent reports.\(^{15,16}\) As can be seen in Table 2 the structures for the two polymorphs of MgSO\(_4\) are somewhat similar, yet they do have significant differences. Both polymorphs crystallize with an orthorhombic lattice but \(\alpha\)-MgSO\(_4\)
crystallizes in space group \textit{Cmcm} whereas β-MgSO$_4$ crystallizes in space group \textit{Pbnm/Pnma}. The lattice volume is approximately the same for both polymorphs, yet the individual lattice parameters vary significantly. The site symmetry of the separate atoms in each cell is also quite different between the polymorphs. For Mg and S each polymorph has only one crystallographically unique site. The most significant differences between the two polymorphs is the number of crystallographically inequivalent oxygen sites. α-MgSO$_4$ has two unique oxygen sites with ratio 1:1, while β-MgSO$_4$ has three sites with ratio 2:1:1. When examining the two reported structures of β-MgSO$_4$, it can be seen that the differences between the two are quite small. It is therefore interesting to test whether the first principle calculations are capable to distinguish the differences and how accurately they can reproduce the experiment.

25Mg Results

Although 25Mg has the highest natural abundance of all the nuclei examined in this work, it also has the largest quadrupole moment and the smallest magnetogyric ratio. With this in mind, one may expect that the quadrupolar interactions would dominate the NMR spectra of 25Mg in MgSO$_4$. The 25Mg natural abundance SS-NMR spectra obtained at 21.1 T for α-MgSO$_4$ and β-MgSO$_4$ are shown in Figures 1 and 2. Both stationary and MAS spectra are shown obtained with Hahn Echo and QCPMG pulse sequences. The parameters extracted from the experimental spectra together with the CASTEP computational results can be found in Table 3. The quadrupolar interaction indeed dominates the experimental 25Mg spectra with the magnitudes differing significantly for
α- and β-MgSO$_4$ polymorphs. In fact, the determined values $C_Q = 7.41 \pm 0.05$ MHz and $C_Q = 10.4 \pm 0.1$ MHz in α- and β-MgSO$_4$ respectively, are among the largest observed for magnesium salts, where typically $C_Q < 5$MHz for 25Mg.19,32,34-40 The quadrupolar asymmetry parameter, η_Q, is also quite different for the two the polymorphs. 25Mg in α-MgSO$_4$ has an $\eta_Q = 0.35 \pm 0.02$ whereas that of β-MgSO$_4$ is practically equal to 1.0. With just the 25Mg quadrupolar parameters alone it is possible to differentiate these two polymorphs based on the SS NMR spectra. The isotropic chemical shifts δ_{iso} for α- and β-MgSO$_4$ are -8.1 ± 1.0 ppm and 0.2 ± 2.0 ppm, respectively, which is well within the range of the shifts expected for a compound such as MgSO$_4$.32 Typically for octahedrally oxygen-coordinated Mg compounds the isotropic chemical shift ranges from ~ -10 ppm to ~10 ppm.32,34,40 Since the range of 25Mg chemical shifts for oxygen-coordinated magnesium is relatively small, it is not surprising that the chemical shift anisotropy for 25Mg in both α- and β-MgSO$_4$ is quite small. Considering the scale of the quadrupolar interactions for both polymorphs, the accuracy of the experimental 25Mg CSA is rather low. The experimental values can found in Table 3. Due to a considerably larger magnitude of the quadrupolar interactions for β-MgSO$_4$, detection of the CSA is even more difficult, and only an estimate for the upper limit of the anisotropy σ_{aniso} is reported.

Data in Table 3 demonstrate very reasonable agreement between experimental and calculated 25Mg NMR parameters. The isotropic chemical shift was predicted accurately for 25Mg in α-MgSO$_4$ yet was slightly overestimated for both calculations in β-MgSO$_4$. CASTEP was also able to predict the scale of the 25Mg CSA for both polymorphs, and the parameters match quite well with the experimental values for σ_{aniso},
The calculated quadrupolar parameters are also in good agreement with the experiment. Although the calculated quadrupolar coupling constant for both polymorphs was slightly overestimated, the prediction of η_{Q_s} was good for both polymorphs. Looking at the two sets of calculated data for β-MgSO$_4$, one can see that the calculations for the NPD structure and the single crystal XRD structure produce somewhat different results. Notwithstanding, from the 25Mg parameters alone it is difficult to conclude if one structure produced more accurate calculations than the other. The calculated isotropic shifts were overestimated in both cases, although the single crystal diffraction structure calculations produced a result closer to the measured shift of 0.2 ppm. The calculated quadrupolar coupling constants for the NPD and the XRD data are much the same, with both structures producing overestimated values of C_Q's. In this case, though, the neutron powder diffraction structure calculation produced a C_Q closer to the measured value of 10.4 MHz. Once again, at this stage it is hard to discern if one structure more accurately represents the actual room temperature structure of β-MgSO$_4$.

The CASTEP calculations also provide orientations of the CSA and EFG tensors for all atoms of interest. This is particularly useful for assisting in analyzing the fine structural details in a given material. For the case of magnesium in both polymorphs the crystallographically unique magnesium site is present in an octahedral environment of oxygen atoms. However, as can be seen in Table 2 the point group symmetry of Mg sites in MgSO$_4$ is far from perfectly octahedral. For α-MgSO$_4$ magnesium is present in C_{2h} symmetry and the relevant symmetry operations present at the magnesium site can be seen in Figure 1B. For this type of symmetry it has been shown that the principal
components of the symmetric part of the shielding tensor are independent of each other.41,42 Thus, one might not necessarily expect an axially symmetric shielding tensor with these restrictions on the principal components of the shielding tensor.43 Indeed, looking at the shielding asymmetry parameter, η_{CSA}, for ^{25}Mg in α-MgSO$_4$ shows a non-axially symmetric tensor with $\eta_{\text{CSA}} = 0.8 \pm 0.2$. A similar argument can be made for the axially symmetric nature of the EFG tensor.44 In agreement, the quadrupolar asymmetry parameter for ^{25}Mg in α-MgSO$_4$ shows a non-axially symmetric EFG tensor with $\eta_Q = 0.35 \pm 0.02$. Examination of the calculated tensors for ^{25}Mg in α-MgSO$_4$ (Figure 1B) uncovers some interesting details. The largest calculated components of the EFG and CSA tensors, V_{33} and σ_{33}, both lie in the mirror plane through the magnesium atom. CASTEP also predicts that the V_{33} and σ_{33} components are coincident with the Euler angle $\beta = 0^\circ$, which is what is observed experimentally. The V_{33} and σ_{33} components also point directly towards one of the oxygen atoms that is part of the Mg-O pseudo-octahedron. Additionally, the V_{22} and σ_{11} components point along the C_2 proper rotation axis through the magnesium. The single unique Mg site in β-MgSO$_4$ is slightly different from that of α-MgSO$_4$. In β-MgSO$_4$, Mg is present in a C_i site, which means one would again not expect an axially symmetric CSA or EFG tensor.42-44 Although the asymmetry parameter of the CSA tensor, η_{CSA}, could not be accurately measured due to the dominance of the EFG interaction, the quadrupolar asymmetry parameter is certainly not axially symmetric with $\eta_Q = 1.0$. The calculated EFG and CSA tensor orientations for Mg in β-MgSO$_4$ are shown in Fig. 2B. Since there is only a centre of inversion at the Mg site in β-MgSO$_4$ there is little to constrain the tensor orientations on the basis of symmetry. However, the largest component of the CSA tensor, σ_{33}, appears to point towards one of
the oxygen atoms of the Mg-O pseudo-octahedron. Although it might seem that V_{33} is pointing towards another of the oxygen atoms in the octahedron, the deviation is large enough that this might not necessarily be the case.

33S Results

Sulfur-33 has a considerably lower natural abundance from that of 25Mg making it quite a difficult nucleus to study. However, it has a larger magnetogyric ratio and smaller quadrupole moment than that of 25Mg. As such, one might not expect the quadrupolar interaction to necessarily dominate the 33S SS spectra as much as in the case of 25Mg. The 33S natural abundance SS-NMR spectra taken at 21.1 T for α- and β-MgSO$_4$ can be seen in Figures 3A and 3C. The NMR parameters extracted from the experimental spectra along with the calculations are summarized in Table 3. Indeed, the quadrupolar interactions do not dominate in the case of 33S as they did for 25Mg and CSA parameters could be reliably extracted (Table 3). The experimentally determined quadrupolar coupling constants were: $C_Q = 2.14 \pm 0.05$ MHz for 33S in α-MgSO$_4$ and $C_Q = 2.00 \pm 0.05$ MHz for β-MgSO$_4$. Although the magnitude of the quadrupolar interaction is quite similar for both α- and β-MgSO$_4$, the asymmetry parameters η_Q are quite different. For α-MgSO$_4$ it is nearly completely asymmetric with $\eta_Q = 0.91 \pm 0.05$, whereas in β-MgSO$_4$ the 33S EFG tensor deviates only slightly from being axially symmetric with $\eta_Q = 0.11 \pm 0.05$. This gives another distinctive characteristic for the two polymorphs. In terms of isotropic chemical shifts for 33S sites in α- and β-MgSO$_4$ the values are very similar to each other with $\delta_{iso} = 313.1 \pm 0.5$ ppm for α-MgSO$_4$ and $\delta_{iso} = 316.8 \pm 0.5$ ppm for β-
MgSO$_4$. This is not surprising since the isotropic chemical shift range for 33S in anhydrous sulfates is known to be quite narrow.19,33 At high magnetic fields the presence of the CSA potentially can complicate the spectra considerably. However, for the given case there is a discernable and measurable difference between the anisotropy in the sulfur sites of the two polymorphs. α-MgSO$_4$ has a larger chemical shielding anisotropy for 33S than does β-MgSO$_4$, with $\sigma_{aniso} = -51.5 \pm 5.0$ ppm for 33S α-MgSO$_4$ and $\sigma_{aniso} = -36.6 \pm 5.0$ ppm for 33S in β-MgSO$_4$ (Table 3).

It is again of particular interest to compare the calculated NMR parameters to those obtained experimentally. It can be seen from Table 3 that overall agreement between 33S experiments and calculations are very good. The CASTEP calculations for α-MgSO$_4$ reproduce quite well the isotropic chemical shift of sulfur. The quadrupolar coupling constant is only slightly underestimated and the asymmetry parameter is predicted very accurately. The magnitude of the anisotropy parameter, σ_{aniso}, was also accurately predicted for 31S in α-MgSO$_4$, despite having an opposite sign (in Haeberlen convention,46,47 when the asymmetry η_{CSA} is close to 1 the reverse of the anisotropy sign is not uncommon). The calculated value for the asymmetry of the CSA, η_{CSA}, and the Euler angles, $\{\alpha, \beta, \gamma\}$ also match the experiment well. The CASTEP calculations reproduce the 33S experimental results quite accurately for the β-polymorph too. The calculated isotropic chemical shift and the quadrupolar parameters match the experimental values well. The chemical shielding anisotropy is also predicted accurately in both magnitude and sign. When examining the calculated results for 33S for the two reported structures of β-MgSO$_4$ a few notable differences can be seen. Both the
calculated isotropic chemical shift and the quadrupolar coupling constant for the structure
determined through single crystal X-ray diffraction reproduce the experimental
parameters more accurately. The only parameter from the CASTEP calculations
employing the neutron powder diffraction structure which matched the experiment more
closely than that from the single crystal, was the quadrupolar asymmetry parameter, η_Q.
Yet, the predicted η_Q from the single crystal structure is also well within experimental
error of the experimental value. Altogether this suggests that the atomic coordinates
obtained in a single crystal study of β-MgSO$_4$ are more accurate and reliable than those
from the neutron powder diffraction study. Although it is not entirely correct to compare
directly R-factors from the SC XRD and PND studies, we note that the single crystal
XRD study of β-MgSO$_4$ reports R=0.017 [16], when the PND for the same polymorph
resulted in R=0.036[15].

Further examination of the CASTEP calculations and structural features of sulfur
in MgSO$_4$ shows some interesting details. Sulfur is, of course, in a tetrahedrally
coordinated oxygen environment in the SO$_4^{2-}$ anion. However, the symmetry present at
the sulfur site is quite far from being perfectly tetrahedral. Table 2 and Figures 3B and
3D show the point group symmetry present at the sulfur site in α- and β-MgSO$_4$. Similar
to the previous case of 25Mg, it is interesting to examine the relationship, if any, between
the local environment and the NMR parameters for 33S, both experimental and calculated.
For α-MgSO$_4$ (Figure 3B), symmetry of sulfur site is C_{2v}. For this type of symmetry there
are three independent components of the symmetric part of the shielding tensor.41,42 So
again one might not necessarily expect an axially symmetric shielding tensor with these
restrictions on the principal components of the shielding tensor. And indeed the experimental results for 33S in α-MgSO$_4$ show a non-axially symmetric shielding tensor with $\eta_{CSA} = 1.0 \pm 0.2$. A similar argument can be made for the case of the EFG tensor and the experimentally determined quadrupolar asymmetry parameter is far from axially symmetric with $\eta_Q = 0.91 \pm 0.05$. Examining the calculated tensor orientations for α-MgSO$_4$ in Figure 3B reveals some additional details. The largest component of the EFG tensor, V_{33}, is restricted to one of the mirror planes through the sulfur atom while σ_{33} lies in the other mirror plane. Additionally, V_{11} and σ_{22} are calculated to be along the C_2 proper rotation axis through the sulfur site. With these orientations the angle between the largest components of the EFG and CSA tensor, V_{33} and σ_{33}, is 90°, which is totally in agreement with experiment (Table 3). The situation for sulfur in β-MgSO$_4$ is quite different from that of α-MgSO$_4$. The symmetry of the site is C_s with a mirror plane through the sulfur atom (Table 2 and Figure 3D). Thus, one would expect few restrictions on the number of independent components of the CSA and EFG tensors and axial symmetry generally should not be expected. The presence of sulfur on a mirror plane, however, requires that one component of each tensor to be perpendicular to the plane, and the others must be in the plane. This inflicts limitations on possible relative orientations of two tensors. Interestingly, though, the shielding tensor for β-MgSO$_4$ is predicted by CASTEP to be close to axially symmetric and is experimentally measured to be $\eta_{CSA} = 0.0 \pm 0.2$. The EFG tensor is also experimentally close to axially symmetric with $\eta_Q = 0.11 \pm 0.05$. Examining the calculated tensor orientations shows V_{33} is restricted to the mirror plane while σ_{33} is perpendicular to the plane. V_{33} also points to one of the oxygen atoms in the tetrahedron of the SO_4^{2-} group. This S-O axis may act as a pseudo-C_3.
rotation axis in an SO$_4^{2-}$ anion. This, together with very small differences in the S-O bond lengths in the ion, may explain nearly axially symmetric nature of the CSA and EFG tensors. Again, a 90° angle is predicted between V_{33} and σ_{33} and this is confirmed experimentally (Table 3).

17O Results

The study of 17O is known to be quite a challenge, in general, due to the extremely low natural abundance and quadrupolar nature of the nucleus. In this work the samples are slightly enriched in 17O which significantly relaxes the sensitivity issues. Additionally, 17O has a significantly larger magnetogyric ratio and a much smaller quadrupole moment from that of 25Mg and 33S. In magnesium sulfates, however, there is the additional problem of having multiple crystallographic sites for oxygen in both polymorphs studied.

The 17O SS NMR spectra and spectral simulations for α- and β-MgSO$_4$ taken at 21.1 and 9.4 T can be seen in Figures 4 and 6, respectively. To aid in the assignment and extraction of spectral parameters for the multiple oxygen sites in each polymorph, MQMAS experiments were also performed and shown in Figures 5 and 7. The 17O results for α-MgSO$_4$ are not as complicated as in the case of β-MgSO$_4$ since there are only 2 crystallographically unique oxygen sites in α-MgSO$_4$. The 3Q MQMAS spectrum for α-MgSO$_4$ shows two clearly resolved unique oxygen sites. Measurements of the stationary powder samples at two different fields aided by the MAS data and combined with the
simulations allow for accurate extraction of parameters for both oxygen sites in α-MgSO₄. The ^{17}O NMR parameters obtained for the two oxygen sites in α-MgSO₄ are in fact quite similar (Table 3). The isotropic chemical shifts differ only by about 3 ppm and the quadrupolar coupling constants are nearly identical. Despite the small differences, however, the numerous singularities in the spectra on Figure 4 can be resolved, aiding in the parameters evaluation. This example demonstrates the importance of using an ultrahigh field for obtaining the necessary resolution in studies of quadrupolar nuclei. The static experiments performed on α-MgSO₄ also show a measurable contribution of the CSA interaction. The extracted shielding anisotropy parameters are also listed in Table 3. The shielding asymmetry parameters for both sites are quite similar with $\eta_{CSA} = 0.18$ and $\eta_{CSA} = 0.15$. The anisotropy, on another hand, for one of the ^{17}O sites at $\sigma_{aniso} = 128$ ppm is much larger than that for the other site with $\sigma_{aniso} = 77$ ppm, providing a means for a better assignment of the sites.

In the case of β-MgSO₄, there are 3 crystallographically inequivalent oxygen sites, making assignment somewhat more difficult. Indeed, the MQMAS spectrum of ^{17}O in β-MgSO₄ was not able to completely resolve the 3 oxygen sites. Nevertheless, by fitting the high field 1D MAS and static experiments and examining the lower field data, reasonable estimates for the spectral parameters for all three oxygen sites still can be accomplished, as summarized in Table 3. It should be noted that the results obtained for ^{17}O in β-MgSO₄ are similar to α-MgSO₄ in that the parameters for all sites are, in general, in the expected range and reasonably similar. Akin to the ^{25}Mg and ^{33}S results, the data obtained from ^{17}O can be used in distinguishing the two polymorphs of MgSO₄.
One interesting observation in regard to the ^{17}O data, is that the singularities appear to be less resolved in the spectra obtained at the higher field. The main reason for this is an unfortunate interplay between the EFG and the CSA tensors. While the quadrupolar interactions are clearly dominate the spectrum at 9.4T with a relatively small input from the CSA, the situation is altered at 21.1T. The dramatically reduced quadrupolar contribution together with an accordingly scaled up CSA, result in a strong overlap of singularities and contributions from several sites. One should also note, that although the stationary spectra at 21.1T appear visually broader than at 9.4 T, they actually span over much narrower spectral regions (i.e., compare the scales below the spectra).

The CASTEP-calculated NMR parameters for ^{17}O in both α- and β-MgSO$_4$ match the experimentally determined values quite well. The predicted quadrupolar coupling constants for all ^{17}O sites in both α- and β-MgSO$_4$ match the experimental values accurately. As well, the magnitude of the calculated shielding anisotropy is predicted correctly for all ^{17}O sites. The only seemingly large discrepancy between the calculated results and the experimental NMR parameters is the isotropic shift of the ^{17}O sites in α- and β-MgSO$_4$. In all cases the calculated isotropic shift for ^{17}O is systematically lower than the experimentally determined value. The issue may be due to the shielding reference for ^{17}O used in this work, based on single point instead of a correlation reference as used in the case for ^{25}Mg and ^{33}S. Since the accurate prediction of ^{17}O NMR parameters is well documented,5,9 one might expect that if a correlation reference
produced on a large set of oxygen-containing compounds, the agreement between calculated isotropic shift and experimental isotropic shift would improve. From the 17O calculations for β-MgSO$_4$ alone, it is somewhat difficult to conclude whether one structure provided more accurate NMR parameters than the other since the calculated parameters are rather similar. Still, by examining the calculated isotropic chemical shift it can be seen that the values obtained from the single crystal XRD structure provided a more accurate forecast of the experimental isotropic shifts.

Similar to 25Mg and 33S, a closer examination of the calculated results offers some interesting insights into the structural details of these MgSO$_4$ polymorphs. Since there are multiple oxygen sites, only the largest component of both the calculated EFG and CSA tensor are shown on Figures 5 and 7 to avoid figure complexity. The calculated tensor orientations at the both oxygen sites in α-MgSO$_4$ are shown in Figure 5. Both oxygen sites in α-MgSO$_4$ have C_s symmetry resulting in a single mirror plane through each atom. The V_{33} and σ_{33} components for both oxygen sites lie in their respective mirror planes. One oxygen site has both principal components pointed directly away from the sulfur atom with an Euler angle β of \sim10°, while the other oxygen site has V_{33} pointing directly away from the sulfur atom when the respective σ_{33} is pointing directly towards the sulfur resulting in an Euler angle β of \sim180°. This result accurately matches the experiment. Given the symmetry present at these oxygen sites one would not expect an axially symmetric EFG or CSA tensor.$^{41-44}$ Indeed, the experimental asymmetry parameters η_Q and η_{CSA} indicate the lack of axial symmetry for both tensors.
The calculated orientations for the main components of the EFG and CSA tensors in β-MgSO$_4$ are shown in Figure 7. As for the α-form, the principal components V_{33} and σ_{33} for the oxygen atoms that have C_s symmetry, lie in the mirror plane (O2 and O3, with corresponding V_{33}^2, σ_{33}^2 and V_{33}^3, σ_{33}^3). For both these oxygen atoms, the V_{33} and σ_{33} components also point directly towards the central sulfur atom with $\beta = \sim 5^\circ$ in an accord with the experiment (Table 3). For the oxygen site with symmetry C_1 the largest components of the EFG and CSA tensors are also almost coincident with $\beta = \sim 5^\circ$ similar to the other oxygen sites. In this case, however, V_{33} and σ_{33} point directly away from the central sulfur atom.

Conclusions

The present study has demonstrated that with the use of ultrahigh fields of 21.1 T previously unattractive nuclei such as ^{25}Mg, ^{33}S, and ^{17}O can be studied via SS NMR with relative ease. The α- and β- polymorphs of anhydrous magnesium sulfate were studied via SS-NMR on all the nuclei of material. The two polymorphs can be successfully distinguished and the spectra are in a complete accord with the crystal structures of the materials. For ^{25}Mg and ^{33}S simple 1D MAS experiments are all that is needed to distinguish between the polymorphs, whereas enrichment and 2D experiments were required for ^{17}O. With the aid of first principles calculations, fine structural details
and the relation of the EFG and CSA tensors were examined for all nuclei in both polymorphs. It was found that symmetry at the sites and character of the chemical bonds dictated specific tensor orientations. Another aspect of the study was to compare the recently reported crystal structures for β-MgSO₄. It was found that, at least for 33S and 17O, the calculations performed on a structure from single crystal XRD reproduce the experimental parameters more accurately than the calculations using the structural data from the neutron powder diffraction. This work demonstrates how previously difficult NMR nuclei can now be successfully studied, assisting in a better understanding of materials nature. With the aid of first principles calculations, the information for each nuclei complements each other resulting in a detailed picture of the fine structural details.

Acknowledgments

The authors thank Dr. Victor Terskikh for useful discussions and access to computational resources. Access to the 900 MHz NMR spectrometer was provided by the National Ultrahigh Field NMR Facility for Solids (Ottawa, Canada), a national research facility funded by the Canada Foundation for Innovation, the Ontario Innovation Trust, Recherche Québec, the National Research Council Canada, and Bruker BioSpin and managed by the University of Ottawa (www.nmr900.ca <http://www.nmr900.org/>).
References

1. This article is part of a Special Issue dedicated to Professor R. Wasylishen in recognition of his contribution to Solid State NMR in Canada.

Figures Captions

Figure 1 Experimental and simulated 25Mg spectra of α-MgSO$_4$: A – stationary sample (both Hahn-Echo and QCPMG are shown), B - MAS (both Hahn-Echo and rotor-synchronized QCPMG are shown), and C - calculated orientations of the EFG and CSA tensors. Analytical simulations of the spectra were performed with WSolids27 for stationary spectra and DMFit28 for the MAS experiments.

Figure 2 Experimental and simulated 25Mg spectra of β-MgSO$_4$: A – stationary sample with both Hahn-Echo and QCPMG experiments are shown, B – MAS at 16 kHz with rotor-synchronized QCPMG, and C - calculated orientations of the EFG and CSA tensors. Analytical simulations of the spectra were performed with WSolids27 for stationary spectra and DMFit28 for the MAS experiments, and included both quadrupolar interactions and the CSA.

Figure 3 Experimental and simulated 33S spectra of α-MgSO$_4$ (panel A) and β-MgSO$_4$ (panel C). Traces a’, c’ are the spectral simulations accounting only for quadrupolar interactions. Traces a” and c” are the fits that also include the CSA. The spectral fits to the MAS spectra account for quadrupolar interactions only. Panels B and D demonstrate the calculated orientations of the EFG and CSA tensors of sulfur nucleus in α– and β-polymorphs, respectively. Dotted vertical lines indicate positions of singularities in the spectra. Note the discrepancies between the simulations and the experiment when only quadrupolar interaction are considered (traces a’ and c’).
Figure 4 Experimental and simulated 17O spectra of α-MgSO$_4$ at 21.1T (panel A) and at 9.4T (panel B). Traces a’, b’ are the spectral simulations accounting only for quadrupolar interactions. Traces a” and b” are the fits that also include the CSA. The spectral fits to the MAS spectra account both for quadrupolar interactions and the CSA. Dotted vertical lines indicate positions of singularities in the spectra. For online color version, red (upper) traces in the simulated spectra correspond to the sums of the contributing individual sites, shown correspondingly in green, violet and black.

Figure 5 17O 3Q MQMAS spectrum of α-MgSO$_4$ at 21.1T, and calculated orientations of the main components in the EFG and CSA tensors for two oxygen sites in the crystal.

Figure 6 Experimental and simulated 17O spectra of β-MgSO$_4$ at 21.1T and at 9.4T. Traces a’, b’ are the spectral simulations accounting only for quadrupolar interactions. Traces a” and b” are the fits that also include the CSA. The spectral fits to the MAS spectra account both for quadrupolar interactions and the CSA. Dotted vertical lines indicate positions of singularities in the spectra. For online color version, red (upper) traces in the simulated spectra correspond to the sums of the contributing individual sites, shown correspondingly in green, violet and black.
Figure 7 17O 3Q MQMAS spectrum of β-MgSO$_4$ at 21.1T, and calculated orientations of the main principal components in the EFG and CSA tensors for the oxygen sites in the crystal. The components V_{33}^2, σ_{33}^2 and V_{33}^3, σ_{33}^3 lie along the O2-S and O3-S bonds, respectively, and all directed toward the sulfur atom.
Figure 1
Figure 3
Figure 4
Figure 6
Figure 7
Table 1. Magnetic resonance properties of nuclei in MgSO₄.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Spin</th>
<th>Natural Abundance, %</th>
<th>Magnetogyric Ratio γ (10⁷ rad T⁻¹ s⁻¹)</th>
<th>Larmor Frequency at 21.1T, MHz</th>
<th>Quadrupole moment, fm²</th>
<th>Linewidth factor, l/fm⁴</th>
<th>Receptivity (relative to ¹³C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^17O</td>
<td>5/2</td>
<td>0.037</td>
<td>-1.6388</td>
<td>122.02</td>
<td>-2.56</td>
<td>2.1</td>
<td>0.065</td>
</tr>
<tr>
<td>^25Mg</td>
<td>5/2</td>
<td>10.00</td>
<td>2.0557</td>
<td>55.1</td>
<td>19.94</td>
<td>130</td>
<td>1.58</td>
</tr>
<tr>
<td>^33S</td>
<td>3/2</td>
<td>0.76</td>
<td>-3.6281</td>
<td>69.09</td>
<td>-6.78</td>
<td>61</td>
<td>0.101</td>
</tr>
</tbody>
</table>

Table 2. Structural details of MgSO₄ polymorphs.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lattice</td>
<td>Orthorhombic</td>
<td>Orthorhombic</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>a (Å)</td>
<td>5.1747</td>
<td>4.7460</td>
<td>8.5787</td>
</tr>
<tr>
<td>b (Å)</td>
<td>7.8756</td>
<td>8.5831</td>
<td>6.6953</td>
</tr>
<tr>
<td>c (Å)</td>
<td>6.4952</td>
<td>6.7093</td>
<td>4.7438</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>264.70</td>
<td>273.31</td>
<td>272.47</td>
</tr>
<tr>
<td>Z</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Space Group</td>
<td>Cmcm</td>
<td>Pbnn</td>
<td>Pnma</td>
</tr>
<tr>
<td>Mg site symmetry</td>
<td>C₂h</td>
<td>C₁</td>
<td>C₁</td>
</tr>
<tr>
<td>S site symmetry</td>
<td>C₂v</td>
<td>C₃</td>
<td>C₃</td>
</tr>
<tr>
<td>O1 site symmetry</td>
<td>C₃</td>
<td>C₁</td>
<td>C₁</td>
</tr>
<tr>
<td>O2 site symmetry</td>
<td>C₃</td>
<td>C₃</td>
<td>C₃</td>
</tr>
<tr>
<td>O3 site symmetry</td>
<td>-</td>
<td>C₁</td>
<td>C₃</td>
</tr>
</tbody>
</table>
Table 3. Experimental and calculated ^{25}Mg, ^{33}S, and ^{17}O NMR parameters for MgSO$_4$ polymorphs.

<table>
<thead>
<tr>
<th>Polymorph / Nucleus</th>
<th>NMR Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\delta_{iso}/\sigma_{iso} [\delta_{iso,calc}]^c$ (ppm)</td>
</tr>
<tr>
<td>α-MgSO$_4$,a</td>
<td></td>
</tr>
<tr>
<td>^{25}Mg</td>
<td>-8.1 ±1.0</td>
</tr>
<tr>
<td>CASTEP</td>
<td>576.45 [-10.4]</td>
</tr>
<tr>
<td>^{33}S</td>
<td>313.1 ±0.5</td>
</tr>
<tr>
<td>CASTEP</td>
<td>118.81 [115.3]</td>
</tr>
<tr>
<td>^{17}O (site1)</td>
<td>148.6±0.3</td>
</tr>
<tr>
<td>CASTEP (site1)</td>
<td>145.5±0.3</td>
</tr>
<tr>
<td>(site2)</td>
<td>108.77 [146.23]</td>
</tr>
<tr>
<td>CASTEP (site2)</td>
<td>111.31 [143.69]</td>
</tr>
</tbody>
</table>

β-MgSO$_4$ | | | | | | |
^{25}Mg	0.2±3.0	10.4±0.1	1.00±0.05	< 35	-	-
CASTEP (NPD)a	579.59 [-13.53]	12.00	0.95	28.58	0.68	{270, 90, 180}
CASTEP (SCXRD)b	576.63 [-10.57]	12.54	0.91	28.25	0.74	{90, 90, 180}
^{33}S	316.8±0.5	2.00±0.05	0.11±0.05	-37.6±3	0.0±0.2	{90, 175, 10}
CASTEP (NPD)a	126.88 [307.22]	-1.14	0.19	-34.30	0.04	{180, 90, 270}
CASTEP (SCXRD)b	120.89 [131.21]	-1.84	0.33	-40.24	0.14	{180, 90, 185}
^{17}O (site1)	145.3±0.3	7.77±0.07	0.16±0.06	80±20	0.25±0.2	{20, 5, 10}
(site2)	145.7±0.3	8.40±0.07	0.25±0.05	115±20	0.15±0.2	{90, 5, 10}
(site3)	146.6±0.3	8.30±0.07	0.20±0.05	100±20	0.10±0.2	{90, 5, 90}
CASTEP (site1) (NPD)a	117.81 [137.19]	-7.94	0.18	97.47	0.20	{10, 5, 160}
(site2) (NPD)a	121.97 [133.03]	-8.00	0.23	109.88	0.06	{90, 5, 90}
(site3) (NPD)a	127.13 [127.87]	-7.89	0.29	111.98	0.12	{90, 5, 270}
CASTEP (site1) (SCXRD)b	115.91 [139.09]	-7.89	0.17	94.61	0.23	{190, 5, 160}
(site2) (SCXRD)b	115.44 [139.56]	-8.41	0.27	130.36	0.14	{90, 5, 270}
(site3) (SCXRD)b	114.55 [140.45]	-8.31	0.21	118.84	0.10	{270, 5, 90}

a Calculations were performed on geometry optimized structures from NPD data.15,16 b Calculations were performed on geometry optimized structure from SC XRD data.16 c $\delta_{iso,calc}$ obtained as $\delta_{iso} = -\sigma_{iso} - \sigma_{ref}$ with σ_{ref} defined in the experimental section. d Although the calculations produce the sign of the C_Q, only the magnitude can be obtained in our experiments. e η_0 defined as: $|V_{12},V_{22}|/V_{33}$. f The Haebeler convention45,46 is used in CASTEP with the anisotropy defined as $\sigma_{aniso} = \sigma_{11} - (\sigma_{12} + \sigma_{22})/2$. g Asymmetry parameter η_{CSA} is defined as $\eta = (\sigma_{22} - \sigma_{11})/(\sigma_{33} - \sigma_{11})$. Principal components of the symmetric shielding tensor ordered as: $|\sigma_{11} - \sigma_{iso}| \geq |\sigma_{12} - \sigma_{iso}| \geq |\sigma_{22} - \sigma_{iso}|$. h α, β, γ – Euler angles defining the relative orientation of the CSA and EFG tensors.46,47 Accuracy is not expected to be better than ±10°.