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A Novel Data Mining Technique for Gene 
Identification in Time-Series Gene Expression Data 

A. Fazel Famili1, Ziying Liu1 and Junjun Ouyang1

P. Roy Walker2 and Brandon Smith2

Maureen O’Connor3 and Anne Lenferink3

Abstract:  The purpose of this study was to develop a method 
for identifying useful patterns in gene expression time-series 
data. We have developed a novel data mining approach that 
identifies interesting patterns. The method consists of a 
combination of data pre-processing as well as unsupervised 
and supervised learning techniques. To evaluate our approach, 
we have analyzed three time series data sets which investigate 
the temporal transcriptome changes that occur during: 1) the 
cell cycle of budding yeast (S. cerevisiae) [3], 2) the epithelial 
to mesenchymal transition induced by Transforming Growth 
Factor-β1 in mouse mammary epithelial BRI-JM01 cells, and 
3) the program of differentiation induced by retinoic acid in 
human embryonal teratocarcinoma NT-2 cells. We present the 
results from all of our experiments, discuss the patterns 
discovered through the use of our approach and briefly 
explain future plans and directions for improving our method. 
 
Keywords: Data Mining, Genomics, Gene 
identifications, Gene expression, Time-series, and 
Microarray 

1. Introduction 

Recent advances in microarray technology have been 
the driving force for studying genome-wide mRNA 
transcript expression using cDNA microarrays and 
oligonucleotide arrays [2, 4, 5, 14, and 28]. These  
advances have helped researchers investigate biological 
processes at the level of gene activity for thousands of 
genes simultaneously. Moreover, gene expression time 
series data have allowed researchers to investigate 
cellular processes underlying the regulatory effects, and 
to obtain an inference of regulatory networks, 
ultimately leading to an understanding of the cause and 
effect of the transcription of all the genes analyzed [24]. 
The biological regulatory systems of a cell are very 
dynamic, and are governed by complex gene regulatory 
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networks. Understanding the behavioral patterns of 
these networks is possible through the analysis of large 
data sets that measure the transcriptome status at 
several different time points. Knowledge obtained 
through this process may help to discover the 
mechanisms underlying disease development and may 
lead to the identification of potential therapeutic targets. 
The objectives of the analysis of time-series data from 
several studies described here are to:  

(i) search for meaningful patterns in the data (i.e. 
clustering of genes with unique properties), 

(ii) identify specific genes that belong to each 
pattern,  

(iii) identify any relationships between groups of 
genes, and  

(iv) develop one or more models that explain the 
relationships between groups of genes.  

In this paper we propose a novel approach to 
clustering time series microarray data. We further 
introduce a method that combines prior knowledge of 
biological systems with current observations to find the 
interactions between sets of genes and individual genes. 
The approach involves a unique clustering strategy, 
which reduces the magnitude of the problem. The 
resulting clusters are then merged based on a certain 
threshold, in combination with the individual cluster 
properties. We also apply domain knowledge as the 
main criteria to perform hierarchical clustering of 
genes. Finally, we try to identify meaningful 
associations between the high quality clusters by 
running Apriori association algorithms [31], using 
equal-interval discretized centroids of the merged 
clusters. The associations between individual genes in 
these high quality clusters are further evaluated in 
detail. In summary, our analysis allows for the 
discovery of pairs of clusters in which the expression 
levels of gene cluster A influences the expression level 
of gene cluster B. 

The rest of the paper is organized as follows. Section 
2 provides an overview of related work. Section 3 
explains the data and data selection process, and section 
4 briefly explains the structure of the time-series data. 
Section 5 gives an overview of the data mining method 
and section 6 presents details of the experimentation 
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and results. Finally, we end the paper with a conclusion, 
and a discussion of our future research. 

2. Related work 

Clustering analysis is a multivariate data mining 
technique, which identifies meaningful subgroups of 
individuals or objects [6 and 11]. In the gene expression 
context, the analysis is used to identify subsets of genes 
that behave similarly along a time course under the 
described test conditions. A number of previous studies 
have attempted to cluster genes into groups based on 
the expression profiles across different experiments, 
e.g. time points. Genes in the same cluster have similar 
expression patterns and may share the same or related 
regulatory pathways. If many genes in a cluster are 
known to function under certain experimental 
conditions (disease or treatment), other genes with 
unknown functions may therefore also be related to 
these regulatory mechanisms. 

Popular clustering approaches applied to time-series 
microarray data include:  
1) Hierarchical clustering techniques [5 and 29], 

which are based on a distance measure, and yield 
trees of clusters (dendrograms) representing nested 
clusters of patterns and similarity levels. These 
trees can then be ‘cut’ at different levels to 
generate disjoint groupings of the data.  

2) Partitioning optimization techniques (K-means) [9 
and 27], which divide data in order to optimize 
some predefined criterion. K-means partition-
optimization [16] maintains k cluster centroids, 
which are summary descriptions of objects in the 
same cluster. Data objects are assigned to the 
nearest cluster and the cluster centroids are 
recomputed iteratively until an end condition is 
satisfied, such as: no re-assignment of objects, 
minimal decrease in squared error or an iteration 
limit is reached. 

3) Principal Components Analysis (PCA)  [21 and 22] 
is a statistical technique for determining the key 
variables in a multidimensional data set that 
explain differences in the observations made. This 
approach can be used to simplify the analysis and 
visualization of multidimensional data sets [23 and 
7]. 

4) Self Organizing Maps (SOM) [12 and 26] use 
neural networks to map data objects into a one or 
two-dimensional lattice in which neighboring 
nodes tend to define related clusters. 

Model based approaches are also used in the analysis 
of time-series microarray data. These methods consider 
the dependencies between expression profiles belonging 
to subsequent time-points.  

Schliep et al [24] used an iterative procedure based on 
HMM (Hidden Markov Model) to find cluster models 

and an assignment of data points to models that 
maximize the joint likelihood of clustering and models. 
Bar-Joseph et al [1] proposed an approach based on 
statistical models: each cluster is represented by a 
spline curve and the clustering is computed using an 
EM-type algorithm (EM: Expectation Maximization). 
Similarly, Kundaje [13] used a clustering algorithm 
based on statistical splines to estimate continuous 
probabilistic models for clusters of genes with similar 
time expression profiles, and individual genes.  

Ramoni [19 and 20] used a model based clustering 
approach, where the cluster models were autoregressive 
curves of a fixed order. For each cluster of time series 
data, a posterior probability can be derived and models 
with maximum posterior probability are chosen 
agglomeratively, while deciding on the optimal number 
of clusters by applying the Akaike information 
criterion.  

Luan et al [15] introduced a mixed-effects model in 
analyzing time course gene expression data for 
performing clustering of genes in a mixture model 
framework. Michaels et al [17] took advantage of 
cluster analysis and graphical visualization methods to 
reveal correlated patterns of gene expression from time 
series data. 

Other clustering methods related to this research are 
graph theoretic techniques [10] and cluster 
identification via connectivity kernels [25]. Wichert et 
al [30] introduced two simple statistical methods for 
signal detection and gene selection in gene expression 
time series data. 

3. Data and Data Selection Process 

We used three gene expression data sets for this study, 
which are further referred to as “yeast”, “cancer 
genomics”, and “neurogenesis”. Each of these data sets 
contains gene expression measurements for various 
numbers of genes that were collected in different time-
course experiments. One of these data sets is publicly 
available. We provide a reference to one of the private 
data sets used for which more information can be 
obtained. 

Yeast: consisting of 2321 genes as objects with 16 
time points as attributes. This data is a subset from the 
original 6220 genes with 17 time points listed by Cho et 
al. [3] from which we selected 2321 genes based on the 
largest variance in their expression. One abnormal time 
point was removed from the data set as suggested by 
Tomayo et al. [26]. This data has been extensively used 
in the literature for clustering and unsupervised pattern 
recognition. In addition, a large number of genes 
contained in this data set have been biologically 
characterized and assigned to different phases of the 
cell cycle. 

  



                                                                                        

Cancer Genomics: consisting of 331 genes (selected 
from an original list of 15264 genes) obtained from 
cells treated with transforming growth factor (TGF-β1), 
the p38MAPK inhibitor SB203580 (SB) or TGF-
β1+SB. The TGF-β1 data set consists of 5 time points 
(2, 4, 6, 11, and 24 hours), of which each experimental 
condition was repeated 4 to 6 times. The p38MAPK 
inhibitor was used only at the 24-hour time point. The 
gene expression data was expressed as the ratio of the 
experimental sample divided by that of the control 
sample. This data set was generated to characterize the 
murine mammary epithelial tumor cell line, BRI-JM01, 
which undergoes an epithelial-to-mesenchymal-
transition (EMT) and displays an increase in cell 
motility, as a result of TGF-β1 exposure.  These 
alterations in phenotype are thought to be critical for 
tumor progression. The most informative genes in this 
data set exhibited expression patterns that strongly 
correlated with the experimental conditions (stimulus, 
inhibitors). Table 1 shows the three data sets 
representing the experimental conditions. 
 

Table 1.  Data sets of breast cancer research 
Data set H2 H4 H6 H12 H24 
TGF-β1 TGF-β1 TGF-β1 TGF-β1 TGF-β1 TGF-β1 
TGF-β1 
+SB 

TGF-β1 TGF-β1 TGF-β1 TGF-β1 TGF-β1 
+SB 

SB TGF-β1 TGF-β1 TGF-β1 TGF-β1 SB 

 
Neurogenesis: consisting of 1747 up-regulated and 

1083 down-regulated genes (selected from an original 
list of 9600 genes). The data consisted of 9 time points, 
which were named as: undiff, 3, 7, 14, 21, 28 days 
followed by 0, 2 and 3 weeks. The data is related to the 
NT-2 cell line, which is a human embryonal carcinoma 
that is capable of being differentiated into neurons and 
astrocytes. In this experiment the cells were treated with 
retinoic acid (RA) for 28 days to stimulate the 
undifferentiated cells to become neurons or astrocytes, 
followed by a 3-week neuron maturation process in the 
absence of RA. This is a complex process taking 
several weeks involving changes in the expression 
levels of many genes. The overall process is illustrated 
in Figure 1. 

4. The structure of the time-series data 

Typically, time series gene expression data consists of a 
matrix containing intensity data for a group of genes for 
certain time points. Let Xij be the gene expression level 
representing the ith gene at time point tj, for i =1, …, p, 
and j =1, …, n, where p is the number of  genes and n is 
number of time points. Figure 2 shows the overall 
structure of the time-series data. Depending on the 
research problem under study, the entire data or a 
subset of the above matrix may be selected for the data 
analysis process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Neurogenesis time points  
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  T1     T2     T3     …  …    Tn 
 
 

X11  X12  X13       … …             X1n 
X21  X22  X23       … …             X2n 

…  … 

… … 

 
Xp1  Xp2  Xp3      … …            Xpn

 
 
 Xp*n= 
 
 
 
 
 
 Figure 2. Initial structure of the gene expression 

time series data  
 
 

5. Method 

The method introduced in this research is illustrated in 
Figure 5. We divide our method into 12 steps, which 
consist of a combination of data preprocessing tasks, 
followed by a combination of unsupervised and 
supervised learning techniques along with some 
additional steps that are described below. 

In Step 1, we partition the attribute vectors that 
represent all the time points and select a specific 
combination of time points for an unsupervised learning 
process. The procedure for data selection is as follows.  
For n time points (n attribute vectors containing gene 
expression data), the total number of combined data 
points selected, S, is equal to: 
 
 S = (n-x) + 1   Eq. 1 
 
where x is the number of adjacent time points (window 
size) selected for each combination set. Therefore, for a 
5 time points data set (n=5), 2 time points are used for 

  



                                                                                        

each combination, i.e. window size=2, with one time 
point overlapped, then S=4. 

Step 2, is an unsupervised learning process. Here, we 
choose an unsupervised procedure, such as K-Means 
clustering, by which selected time-points are clustered. 
The clustering method selected for this step will depend 
on the characteristics of the application for which the 
data is generated. The expression matrix (Figure 2) is 
then labeled with cluster assignments as shown in 
Figure 3. 

Step 3, involves preliminary listing of all clusters 
obtained from step 2. Therefore, if K-Means is used as 
the unsupervised learning process, for a 5 time points 
data set in which K=2, we will have T=8, total number 
of clusters to evaluate (Eq. 2). 
 
 T= K*[(n-x) + 1]  Eq. 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Step 4, we identify genes that are common to the 
same clusters, then group them together and give a label 
to this group of genes. This process is shown as the core 
of our algorithm in Figure 4.  

Step 5 involves use of some domain knowledge to 
select interesting clusters.  

Step 6 is the process in which, we eliminate clusters 
that do not contain any useful information and merge 
the ones that lead to promising results. The cluster 
merge process is based on one of the three main 
properties of cluster centroid information. These are: (i) 
properties of individual time points (e.g. mean, median, 
etc.), (ii) properties of each time point with respect to 
its adjacent time point (e.g. dimensionless terms such as 
forward-centroid-ratio, backward-centroid-ratio, etc.), 
and (iii) properties of all or a sub-set of time points (e.g. 
partitioned slope, overall slope). This process, which is 

automated, requires some input (e.g. merge selection 
criteria), from the user. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Procedure SplitData (DataMatrix, StartLabelIndex)
    Attribute at StartLabelIndex with outcomes  
     (values) v1, v2 …, vn; 

       n = number of the categories of the StartLabel;  
    Split DataMatrix S ={samples} into subsets        
    Sv1,  …, Svj, …, Svn;
    For i = StartLabelIndex; i<n; i++ ;           
        If (StartLabelIndex of Svj + 1 != n - x + 1)     
            Then SplitData (Svj, (StartLabelIndex + 1)) 
        Else  

Svj add to data vector, count++; {Svj ∈ S  
Label = Lcount};  

        End if 
    End for 
End    Time Points  Labels 

 

In Step 7, we provide the user with all forms of 
additional information to understand the results of the 
cluster merge process. This is done through various 
forms of graphs and data visualization techniques.  

In Step 8, knowledge from domain experts (e.g. 
biologist) is used to focus on certain clusters with 
specific patterns of interest for some follow up analysis. 
This leads to Step 9, in which clusters are labeled. This 
process may then result in building several newly 
labeled data sets. The data for labeled clusters is then 
used for supervised learning methods.  

In Step 10, pattern recognition techniques are applied 
to the data sets. The main objective of this step is to 
identify any association between clusters that contained 
interesting patterns. All models obtained from this 
process are summarized in Step 11. The result of this 
step defines the path for the iteration process during 
which we either look for additional associations or 
associations between genes of certain clusters. 

Finally, in Step 12, we document and present all the 
results (e.g. models). 

6. Experimentation and Results 

This section contains the results from the application of 
the methods introduced in the previous section to the 
three data sets, described earlier. Our objective in this 
section is to highlight interesting clusters and introduce 
informative genes. 
 

Figure 4. The algorithm recursively splits the data matrix 
based on the labels (figure 3, initially L1 is the start label) 

  T1     T2    T3       Tn L1    L2          Ln-x+1

X11  X12 X13 … X1n 
 
X21  X22 X23 … X2n 
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 .      .     .     …  . 
.     .   .     …  . 
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Figure 3. Structure of the expression time series data and 
labels.  

  



                                                                                        

6.1 Preliminary Evaluation of the Data  

Our preliminary investigation of the data characteristics 
allowed us to identify missing values [8], abnormal 
conditions or interesting characteristics. In addition, we 
obtained an over all statistical distribution of the data 
sets. No missing values or anomalies were found in the 
yeast data. There were also no anomalies found among 
the data distributions of the neurogenesis data. 
However, 11.22% and 7.61% missing values were 
found in up and down-regulated data, respectively. 
With regard to the cancer genomics data, no missing 
values were identified in the three sub-data sets. 
However, one gene was filtered out because of a 
statistical irregularity (the standard deviation among 
duplicates was very different from the other genes). 

6.2 Clustering partitioned time points 

The experimentation process started by applying a K-
means clustering method, with K=2, to all partitioned 
time points. We then grouped together genes that 
always remained in the same cluster in the series of 
clustering on pairs of time points (Table 2). In order to 
simplify the process of biological validation, clusters 
without known genes were ignored. 

 

Table 2. Results of Clustering partitioned time points 

Data set 
# of 

clusters 
selected 

# of total 
clusters 

generated 

# of 
selected 
genes 

Total # of 
genes  

Yeast 120 1129 595 2321 
TGF-β1 6 6 330 330 

TGF-β1+SB 7 7 330 330 Cancer 
Genomics

SB 7 7 330 330 
Up  123 273 1341 1747 Neuro Down 151 233 976 1083 

6.3 Meaningful Clusters 
To identify meaningful clusters, we obtained new 
features (forward centroid slope) from the centroids of 
the clusters generated previously. The forward centroid 
slope values were then clustered using an agglomerative 
hierarchical clustering algorithm with both complete 
linkage and Ward’s methods [29 and 32]. The complete 
linkage method evaluates the distance between two 
clusters. Here, the longest distance that can be found 
between any pair of points from the two corresponding 
clusters is: 

JjIiDD ijJI ∈∈= ,},max{,  

  



                                                                                        

where D represents the distance between cluster I and J. 
Lower case i and j represent the elements in the 
corresponding clusters.  In Ward’s method, at each step, 
the central point is calculated for any possible 
combination of two clusters. Then, the total sum of 
squared distances from this point to all objects in this 
hypothetical cluster is evaluated. The hierarchical 
cluster trees were cut at a threshold determined using    
biological domain knowledge and visualization output.  

Yeast: The trees were cut at a threshold generating 5 
clusters, which could then be compared to the five 
major cell cycle phases. Three clusters from the 
complete linkage tree show time-dependent responses 
correlating with Early G1 (C5), Late G1 (C4) and S, G2 
and M (C1) phases (Figure 6). Since the S, G2 and M 
are quite close cell cycle phases, it is not surprising to 
see gene expression changes related to these phases 
condensed into a single cluster. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cancer genomics: Since this data set was a small 
subset of original data, only a few clusters could be 
generated. Therefore it was not necessary to use 
agglomerative clustering to further merge these clusters 
for the three sub-sets. Following are some highlights of 
the clusters generated by the time-series clustering 
processes. 

For TGF-β1 (Figure7), the C2 cluster (containing 3 
genes) is significantly stimulated by the effect of TGF-
β1. Along the time course, the C4 cluster contains 
genes that are slightly down regulated; the C5 cluster 
contains slightly up-regulated genes, whereas the other 
clusters contain genes that fluctuate in no particular 
direction. 

In TGF-β1+SB (Figure 8), the C3 cluster contains 
genes significantly modulated by TGF-β1and repressed 
by the addition of SB (the same genes as in TGF-β1). 
The C2 and C5 clusters contain genes that are 
moderately stimulated by the addition of SB. Along the 
time course, the C4 and C6 clusters contain genes 
whose expression is slightly down regulated, the genes 
in cluster C7 fluctuate slightly, whereas the genes in C1 
change only minimally. 

 

 
Figure 7. Time series plot of cluster centroids. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Time series plot of cluster centroids. 

 
 
 
 
 
 

Figure 6. Time series plot of cluster centroids 

 
 
 
 
 

In the last data subset (SB, Figure 9), C7 was 
significantly stimulated by TGF-β1 and significantly 
repressed by SB (same genes as the other two routes). 
C5 and C6 seem to be moderately repressed by the 
addition of SB. Along the time course, C3 goes down 
slightly, C2 goes up slightly, C4 fluctuates slightly, and 
C1 changes little. 
 

 
Figure 9. Time series plot of cluster centroids. 

 
 
 
 
 
 
 
 
 
 
 
 

Neurogenesis:  From the two data sets of up and 
down-regulated genes, 13 and 14 clusters were 
generated, respectively (Figures 10 and 11).  

Looking at the centroids of the 13 clusters of up-
regulated genes (Figure 10), we found that the patterns 
of C7 and C9 were quite similar. The centroids of these 
clusters show a small peak in expression at 21 days of 
RA exposure, returning to normal until the week 0 
time-point in which RA treatment is withdrawn.  From 
this point to the end of the time course, expression 
increases and implies that RA withdrawal stimulates 

  



                                                                                        

these two groups of genes. C1 and C2 have minimal 
changes at the beginning of RA treatment but these two 
groups of genes, as with C7 and C9, show an up-
regulation following RA withdrawal at week 0 which 
continues to increase up to 3 weeks. C13 first peaks at 
14 days and then declines. It is interesting that during 
maturation it increases immediately, before declining 
from week 2 onwards. C4 reaches its first peak at 7 
days, and then its downward trend continues to 21 days. 
It is recovered a little bit at day 28 and it starts to 
express again at week 0. C6 increases continuously up 
to 28 days. However, after RA withdrawal, it 
immediately declines. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Based on the centroids of the 14 down-regulated 
clusters (Figure 11), C1 does not change much up to 28 
days. Then, after RA withdrawal, it slowly goes down, 
and it seems moderately repressed during maturation.  
C7 and C9 have similar patterns except that C9 is off-
set from C7 by one time point. Both clusters 
consistently and smoothly go down starting at 7 and 14 
days, respectively, followed by steep declines after RA 
withdrawal. C8 contains small changes at the 
beginning. It decreases at 14, 21 and 28 days, then goes 
up after RA withdrawal before declining again. C10 and 
C11 have a similar pattern, with a downward trend 
during treatment with RA and did not consistently 
change after RA withdrawal except for a late increase at 
week 3. 

6.4 Association between Clusters  

Our next task was to identify any associations between 
the clusters. This was done first by deriving forward 
centroid slope data from all the clusters identified 
during the previous step. An equal-width-interval 
discretization method was used to discretize the 
numeric data [31]. The selection criteria for the 

association rules was based on confidence, complexity 
and the coverage of the rules. We use ‘ ’ to indicate 
the simultaneous changes. 
 
 

 
Figure 11. Centroid of down-regulated clusters 

 
 
 
 
 
 
 
 
 
 

Figure 10. Centroid of up-regulated clusters 

 
 
 
 
 

Yeast cell cycle: We used 3 as the number of 
intervals. The associations were between C1, C4 and 
C5 (Figure 12). Figure 13 shows the relationship among 
clusters. C1 (0.2…0.56) C4 (–0.42… 0.12)  C5 (-
0.68… –0.31).  
 
 C1 C2 C3 C4 C5

C1 C2 C3 C4 C5  
Figure 12. Associations in clusters in Yeast data 

 
 
 
 
 

 
 
Cancer genomics:  Using 2 intervals the following 

associations were identified. 
(i) For TGF-β1(Figure 14) C6 (0.92..1.03)  C4 

(0.86..1.4)  C5 (1.09..1.33). 
 
 

Figure 13. Association Graph for Yeast data 

 
 
 
 
 
 
 
 
 
 
 

(ii) For TGF-β1 + SB (Figure 15) The identified 
association was: C2 (1.23..1.85)  C5 (1.9..2.27). 

  



                                                                                        

(iii) For SB (Figure 16) The identified association 
was: C4 (1.42..1.81) C2 (1.06..1.25)  C5 
(1.36..1.97)  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
Neurogenesis: Three intervals were used. For up-

regulated genes, the associations were: C3 (00.5 … 
0.31)  C10 (-0.56 … 0.07) (Figure 17). And for 
down-regulated data, the identified associations were, 
C5 (-0.56 … -0.26)  C1 (-0.36 to 0.0) (Figure 18). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10C11C12C13C14

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10C11C12C13C14
 

 
 

Figure 18. Association for down regulated genes  
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Figure 14. Association graph of TGF-β1 
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Figure 15. Association graph of TGF-β1+ SB 

 
 
 
 
 
 
 

6.5 Most informative genes 
C1 C1
C2 C2
C3 C3
C4 C4
C5 C5
C6 C6
C7 C7

 

Figure 16. Association graph of SB only 

The following is a summary of the contents of all 
clusters that resulted from merging, along with 
highlights of some interesting results. 

Yeast: Following several years of research on this 
data set, many genes have been annotated and their 
functions have been identified in the cell cycle. 
Compared to other studies using yeast data, we have a 
better coverage of the previously well-characterized 
genes (see Table 3 and Figure 19). The remaining genes 
that are included in these clusters are of unknown 
function, but may now be studied to validate their 
predicted relations to the cell cycle and elucidate their 
functions. For example, transcription of SWI5 and 
CLB1 is G2/M specific and activated in G2. These two 
genes are included in cluster C1 in our study (See 
Figure 20). This shows synchronization between these 
two genes.  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13  
 

 
 

Figure 17. Association for up-regulated clusters 

 
Table 3. Coverage of cell cycle related genes 

 
Complete Linkage 

5Clusters 
Early 
G1 

Later 
G1 S G2 M 

C1 2 7 22+1* 22+1* 19+2* 

C2 2 3 3 1+ 3* 1 + 1* 

C3 2 2 8 2 + 1* 2 +1* 

C4 4 70 13 2 1 

C5 22 5 1 1 + 1* 7 

Cluster assignment 22 (C5) 70 (C4) 23 (C1) 23 (C1) 
21 

(C1) 

Total ** 32 87 48 28 30 
 
* The gene(s) also belongs to other cell cycle phases 
** Total number of previously well-characterized genes 

  



                                                                                        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Cancer genomics: It is very interesting to see three 

genes that always stay together in the same cluster in 
the analyses of three sub-data sets (Figures 21, 22 and 
23). The three clusters, to which these genes belong, are 
also discussed in Section 6.2 for their characteristic 
change over the time course. These genes are up 
regulated by the addition of TGF-β1, but repressed in 
the presence of SB. These genes have been highlighted 
in another study [18] using this breast cancer data set. 
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  Figure 19. Comparison of number of previously well-   
  characterized genes detected by different methods.  
  * is the method used in the current study. 

TGF_b + SB

 
 

Figure 22. Genes in TGF- β1 +SB 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SB

 

Figure 23. Genes in SB only 

 
 
 

 
 

Figure 20. Time course synchronization of two genes. 

 
 
 
 
 
 
 
 

 
 
Neurogenesis: Here we repeat the same process after 

removing all the genes identified in the association 
rules generated in the first run. These analyses discover 
associations among genes in these clusters. 

(i) Up regulated genes: The associations among the 
genes identified in two runs of the analysis are listed in 
Table 4 and expression patterns are depicted in Figure 
24 and 25. 

(ii) Down regulated genes: Similarly, the associations 
among the genes identified in two runs of the analysis 
are listed in Table 5 and expression patterns are shown 
in Figures 26 and 27. 

 

 
Table 4. Associations of up-regulated genes 

 TGF_b

 
 

Figure 21. Genes in TGF-β1 

run1
152940 (C10) 152940 (C10)
470712 (C3) 470712 (C3)
325296 (C3) 325296 (C3)
122906 (C3) 122906 (C3)
run2
244896 (C3) 244896 (C3)
210782 (C3) 210782 (C3)

 
 
 
 
 
 
 
 
 

  



                                                                                        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Table 5. Associations of down-regulated genes 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 24. Up-regulated genes in the first run of 
association rules.  

Figure 27. Up-regulated genes in the second run of 
association rules. 

 
 
 
 
 
 
 
 
 
 

 

 Figure 25. Up-regulated genes in the second run of 
association rules. 

7. Conclusions 

We have described a novel method for identifying 
interesting patterns in time-series microarray data 
obtained from multiple experiments. The experimental 
results have shown that our approach not only identifies 
groups of genes with interesting patterns, but is also 
capable of finding associations between these clusters 
as well as associations between individual genes in each 
cluster. This approach could help in the identification of 
gene clusters that influence the behavior of other gene 
clusters at any time point. 

The most interesting part of our results was generated 
using the well-known yeast data set that has been used 
in several previous studies. The patterns that we 
identified are consistent with those identified by another 
study performed on this data set. The results from the 
“cancer genomics” and ”neurogenesis” data sets, 
indicate that the application of machine learning 
methods on partitioned time-series data can help in the 
identification of interesting gene expression patterns.  

Run 1
325955(C5) 325955(C5)
NoSeq_UHN19k_49.2_C10(C5) NoSeq_UHN19k_49.2_C10(C5)
NoSeq_UHN19k_48.2_C6(C5) NoSeq_UHN19k_48.2_C6(C5)

Run 2
137531(C1) 137531(C1)
174020(C1) 174020(C1)
293310(C1) 293310(C1)
325035(C1) 325035(C1)
5191118_UHN19k_31.1_D7(C1) 5191118_UHN19k_31.1_D7(C1)
N/A_UHN19k_24.3_C10(C1) N/A_UHN19k_24.3_C10(C1)
NoSeq_UHN19k_40.3_G12(C1) NoSeq_UHN19k_40.3_G12(C1)
49787(C5) 49787(C5)
136040(C5) 136040(C5)
486795(C5) 486795(C5)
1712682_UHN19k_14.2_B7(C5) 1712682_UHN19k_14.2_B7(C5)
4691672_UHN19k_45.1_H3(C5) 4691672_UHN19k_45.1_H3(C5)

Based on our approach, we present the results 
describing associations between gene clusters, thereby 
focusing on a specific range of gene expressions where 
an association is strongly valid. For example, genes in 
cluster A that change in a certain range influence genes 
in cluster B to change in a certain other range. This 
explains the association between the gene clusters, and 
is based on a particular range of the expression levels. 

 
Figure 26. Down-regulated genes in the first run of 
association rules. 

8. Future Research 

In this study, we present a novel method to identify 
interesting and useful patterns in time series microarray 
data, which reveal the associations among groups of 
genes and individual genes in these clusters. These 
associations will be further studied to identify the 
causal relationships using Hidden Markov Models and 
Bayesian Networks for the identification of gene 
regulatory networks. 
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