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Abstract:  The purpose of this study was to develop a method 

for identifying useful patterns in gene expression time-series 

data. We have developed a novel data mining approach that 

identifies interesting patterns. The method consists of a 

combination of data pre-processing as well as unsupervised 

and supervised learning techniques. To evaluate our approach, 

we have analyzed three time series data sets which investigate 

the temporal transcriptome changes that occur during: 1) the 

cell cycle of budding yeast (S. cerevisiae) [3], 2) the epithelial 

to mesenchymal transition induced by Transforming Growth 

Factor-β1 in mouse mammary epithelial BRI-JM01 cells, and 

3) the program of differentiation induced by retinoic acid in 

human embryonal teratocarcinoma NT-2 cells. We present the 

results from all of our experiments, discuss the patterns 

discovered through the use of our approach and briefly 

explain future plans and directions for improving our method. 

 

Keywords: Data Mining, Genomics, Gene 

identifications, Gene expression, Time-series, and 

Microarray 

1. Introduction 

Recent advances in microarray technology have been 

the driving force for studying genome-wide mRNA 

transcript expression using cDNA microarrays and 

oligonucleotide arrays [2, 4, 5, 14, and 28]. These  

advances have helped researchers investigate biological 

processes at the level of gene activity for thousands of 

genes simultaneously. Moreover, gene expression time 

series data have allowed researchers to investigate 

cellular processes underlying the regulatory effects, and 

to obtain an inference of regulatory networks, 

ultimately leading to an understanding of the cause and 

effect of the transcription of all the genes analyzed [24]. 

The biological regulatory systems of a cell are very 

dynamic, and are governed by complex gene regulatory 
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networks. Understanding the behavioral patterns of 

these networks is possible through the analysis of large 

data sets that measure the transcriptome status at 

several different time points. Knowledge obtained 

through this process may help to discover the 

mechanisms underlying disease development and may 

lead to the identification of potential therapeutic targets. 

The objectives of the analysis of time-series data from 

several studies described here are to:  

(i) search for meaningful patterns in the data (i.e. 

clustering of genes with unique properties), 

(ii) identify specific genes that belong to each 

pattern,  

(iii) identify any relationships between groups of 

genes, and  

(iv) develop one or more models that explain the 

relationships between groups of genes.  

In this paper we propose a novel approach to 

clustering time series microarray data. We further 

introduce a method that combines prior knowledge of 

biological systems with current observations to find the 

interactions between sets of genes and individual genes. 

The approach involves a unique clustering strategy, 

which reduces the magnitude of the problem. The 

resulting clusters are then merged based on a certain 

threshold, in combination with the individual cluster 

properties. We also apply domain knowledge as the 

main criteria to perform hierarchical clustering of 

genes. Finally, we try to identify meaningful 

associations between the high quality clusters by 

running Apriori association algorithms [31], using 

equal-interval discretized centroids of the merged 

clusters. The associations between individual genes in 

these high quality clusters are further evaluated in 

detail. In summary, our analysis allows for the 

discovery of pairs of clusters in which the expression 

levels of gene cluster A influences the expression level 

of gene cluster B. 

The rest of the paper is organized as follows. Section 

2 provides an overview of related work. Section 3 

explains the data and data selection process, and section 

4 briefly explains the structure of the time-series data. 

Section 5 gives an overview of the data mining method 

and section 6 presents details of the experimentation 
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and results. Finally, we end the paper with a conclusion, 

and a discussion of our future research. 

2. Related work 

Clustering analysis is a multivariate data mining 

technique, which identifies meaningful subgroups of 

individuals or objects [6 and 11]. In the gene expression 

context, the analysis is used to identify subsets of genes 

that behave similarly along a time course under the 

described test conditions. A number of previous studies 

have attempted to cluster genes into groups based on 

the expression profiles across different experiments, 

e.g. time points. Genes in the same cluster have similar 

expression patterns and may share the same or related 

regulatory pathways. If many genes in a cluster are 

known to function under certain experimental 

conditions (disease or treatment), other genes with 

unknown functions may therefore also be related to 

these regulatory mechanisms. 

Popular clustering approaches applied to time-series 

microarray data include:  

1) Hierarchical clustering techniques [5 and 29], 

which are based on a distance measure, and yield 

trees of clusters (dendrograms) representing nested 

clusters of patterns and similarity levels. These 

trees can then be ‘cut’ at different levels to 

generate disjoint groupings of the data.  

2) Partitioning optimization techniques (K-means) [9 

and 27], which divide data in order to optimize 

some predefined criterion. K-means partition-

optimization [16] maintains k cluster centroids, 

which are summary descriptions of objects in the 

same cluster. Data objects are assigned to the 

nearest cluster and the cluster centroids are 

recomputed iteratively until an end condition is 

satisfied, such as: no re-assignment of objects, 

minimal decrease in squared error or an iteration 

limit is reached. 

3) Principal Components Analysis (PCA)  [21 and 22] 

is a statistical technique for determining the key 

variables in a multidimensional data set that 

explain differences in the observations made. This 

approach can be used to simplify the analysis and 

visualization of multidimensional data sets [23 and 

7]. 

4) Self Organizing Maps (SOM) [12 and 26] use 

neural networks to map data objects into a one or 

two-dimensional lattice in which neighboring 

nodes tend to define related clusters. 

Model based approaches are also used in the analysis 

of time-series microarray data. These methods consider 

the dependencies between expression profiles belonging 

to subsequent time-points.  

Schliep et al [24] used an iterative procedure based on 

HMM (Hidden Markov Model) to find cluster models 

and an assignment of data points to models that 

maximize the joint likelihood of clustering and models. 

Bar-Joseph et al [1] proposed an approach based on 

statistical models: each cluster is represented by a 

spline curve and the clustering is computed using an 

EM-type algorithm (EM: Expectation Maximization). 

Similarly, Kundaje [13] used a clustering algorithm 

based on statistical splines to estimate continuous 

probabilistic models for clusters of genes with similar 

time expression profiles, and individual genes.  

Ramoni [19 and 20] used a model based clustering 

approach, where the cluster models were autoregressive 

curves of a fixed order. For each cluster of time series 

data, a posterior probability can be derived and models 

with maximum posterior probability are chosen 

agglomeratively, while deciding on the optimal number 

of clusters by applying the Akaike information 

criterion.  

Luan et al [15] introduced a mixed-effects model in 

analyzing time course gene expression data for 

performing clustering of genes in a mixture model 

framework. Michaels et al [17] took advantage of 

cluster analysis and graphical visualization methods to 

reveal correlated patterns of gene expression from time 

series data. 

Other clustering methods related to this research are 

graph theoretic techniques [10] and cluster 

identification via connectivity kernels [25]. Wichert et 

al [30] introduced two simple statistical methods for 

signal detection and gene selection in gene expression 

time series data. 

3. Data and Data Selection Process 

We used three gene expression data sets for this study, 

which are further referred to as “yeast”, “cancer 

genomics”, and “neurogenesis”. Each of these data sets 

contains gene expression measurements for various 

numbers of genes that were collected in different time-

course experiments. One of these data sets is publicly 

available. We provide a reference to one of the private 

data sets used for which more information can be 

obtained. 

Yeast: consisting of 2321 genes as objects with 16 

time points as attributes. This data is a subset from the 

original 6220 genes with 17 time points listed by Cho et 

al. [3] from which we selected 2321 genes based on the 

largest variance in their expression. One abnormal time 

point was removed from the data set as suggested by 

Tomayo et al. [26]. This data has been extensively used 

in the literature for clustering and unsupervised pattern 

recognition. In addition, a large number of genes 

contained in this data set have been biologically 

characterized and assigned to different phases of the 

cell cycle. 

  



                                                                                        

Cancer Genomics: consisting of 331 genes (selected 

from an original list of 15264 genes) obtained from 

cells treated with transforming growth factor (TGF-β1), 

the p38MAPK inhibitor SB203580 (SB) or TGF-

β1+SB. The TGF-β1 data set consists of 5 time points 

(2, 4, 6, 11, and 24 hours), of which each experimental 

condition was repeated 4 to 6 times. The p38MAPK 

inhibitor was used only at the 24-hour time point. The 

gene expression data was expressed as the ratio of the 

experimental sample divided by that of the control 

sample. This data set was generated to characterize the 

murine mammary epithelial tumor cell line, BRI-JM01, 

which undergoes an epithelial-to-mesenchymal-

transition (EMT) and displays an increase in cell 

motility, as a result of TGF-β1 exposure.  These 

alterations in phenotype are thought to be critical for 

tumor progression. The most informative genes in this 

data set exhibited expression patterns that strongly 

correlated with the experimental conditions (stimulus, 

inhibitors). Table 1 shows the three data sets 

representing the experimental conditions. 

 
Table 1.  Data sets of breast cancer research 

Data set H2 H4 H6 H12 H24 

TGF-β1 TGF-β1 TGF-β1 TGF-β1 TGF-β1 TGF-β1 

TGF-β1 

+SB 

TGF-β1 TGF-β1 TGF-β1 TGF-β1 TGF-β1 

+SB 

SB TGF-β1 TGF-β1 TGF-β1 TGF-β1 SB 

 

Neurogenesis: consisting of 1747 up-regulated and 

1083 down-regulated genes (selected from an original 

list of 9600 genes). The data consisted of 9 time points, 

which were named as: undiff, 3, 7, 14, 21, 28 days 

followed by 0, 2 and 3 weeks. The data is related to the 

NT-2 cell line, which is a human embryonal carcinoma 

that is capable of being differentiated into neurons and 

astrocytes. In this experiment the cells were treated with 

retinoic acid (RA) for 28 days to stimulate the 

undifferentiated cells to become neurons or astrocytes, 

followed by a 3-week neuron maturation process in the 

absence of RA. This is a complex process taking 

several weeks involving changes in the expression 

levels of many genes. The overall process is illustrated 

in Figure 1. 

4. The structure of the time-series data 

Typically, time series gene expression data consists of a 

matrix containing intensity data for a group of genes for 

certain time points. Let Xij be the gene expression level 

representing the ith gene at time point tj, for i =1, …, p, 

and j =1, …, n, where p is the number of  genes and n is 

number of time points. Figure 2 shows the overall 

structure of the time-series data. Depending on the 

research problem under study, the entire data or a 

subset of the above matrix may be selected for the data 

analysis process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Neurogenesis time points 
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 Figure 2. Initial structure of the gene expression 

time series data  

 

 

5. Method 

The method introduced in this research is illustrated in 

Figure 5. We divide our method into 12 steps, which 

consist of a combination of data preprocessing tasks, 

followed by a combination of unsupervised and 

supervised learning techniques along with some 

additional steps that are described below. 

In Step 1, we partition the attribute vectors that 

represent all the time points and select a specific 

combination of time points for an unsupervised learning 

process. The procedure for data selection is as follows.  

For n time points (n attribute vectors containing gene 

expression data), the total number of combined data 

points selected, S, is equal to: 

 

 S = (n-x) + 1   Eq. 1 

 

where x is the number of adjacent time points (window 

size) selected for each combination set. Therefore, for a 

5 time points data set (n=5), 2 time points are used for 

  



                                                                                        

each combination, i.e. window size=2, with one time 

point overlapped, then S=4. 

Step 2, is an unsupervised learning process. Here, we 

choose an unsupervised procedure, such as K-Means 

clustering, by which selected time-points are clustered. 

The clustering method selected for this step will depend 

on the characteristics of the application for which the 

data is generated. The expression matrix (Figure 2) is 

then labeled with cluster assignments as shown in 

Figure 3. 

Step 3, involves preliminary listing of all clusters 

obtained from step 2. Therefore, if K-Means is used as 

the unsupervised learning process, for a 5 time points 

data set in which K=2, we will have T=8, total number 

of clusters to evaluate (Eq. 2). 

 

 T= K*[(n-x) + 1]  Eq. 2 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

In Step 4, we identify genes that are common to the 

same clusters, then group them together and give a label 

to this group of genes. This process is shown as the core 

of our algorithm in Figure 4.  

Step 5 involves use of some domain knowledge to 

select interesting clusters.  

Step 6 is the process in which, we eliminate clusters 

that do not contain any useful information and merge 

the ones that lead to promising results. The cluster 

merge process is based on one of the three main 

properties of cluster centroid information. These are: (i) 

properties of individual time points (e.g. mean, median, 

etc.), (ii) properties of each time point with respect to 

its adjacent time point (e.g. dimensionless terms such as 

forward-centroid-ratio, backward-centroid-ratio, etc.), 

and (iii) properties of all or a sub-set of time points (e.g. 

partitioned slope, overall slope). This process, which is 

automated, requires some input (e.g. merge selection 

criteria), from the user. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Procedure SplitData (DataMatrix, StartLabelIndex)

    Attribute at StartLabelIndex with outcomes  

     (values) v1, v2 …, vn; 

       n = number of the categories of the StartLabel;  

    Split DataMatrix S ={samples} into subsets        

    Sv1,  …, Svj, …, Svn;

    For i = StartLabelIndex; i<n; i++ ;           

        If (StartLabelIndex of Svj + 1 != n - x + 1)     

            Then SplitData (Svj, (StartLabelIndex + 1)) 

        Else  

Svj add to data vector, count++; {Svj ∈ S  

Label = Lcount};  

        End if 

    End for 

End    Time Points  Labels 

 

In Step 7, we provide the user with all forms of 

additional information to understand the results of the 

cluster merge process. This is done through various 

forms of graphs and data visualization techniques.  

In Step 8, knowledge from domain experts (e.g. 

biologist) is used to focus on certain clusters with 

specific patterns of interest for some follow up analysis. 

This leads to Step 9, in which clusters are labeled. This 

process may then result in building several newly 

labeled data sets. The data for labeled clusters is then 

used for supervised learning methods.  

In Step 10, pattern recognition techniques are applied 

to the data sets. The main objective of this step is to 

identify any association between clusters that contained 

interesting patterns. All models obtained from this 

process are summarized in Step 11. The result of this 

step defines the path for the iteration process during 

which we either look for additional associations or 

associations between genes of certain clusters. 

Finally, in Step 12, we document and present all the 

results (e.g. models). 

6. Experimentation and Results 

This section contains the results from the application of 

the methods introduced in the previous section to the 

three data sets, described earlier. Our objective in this 

section is to highlight interesting clusters and introduce 

informative genes. 

 

Figure 4. The algorithm recursively splits the data matrix 

based on the labels (figure 3, initially L1 is the start label) 
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Figure 3. Structure of the expression time series data and 

labels.  

  



                                                                                        

6.1 Preliminary Evaluation of the Data  

Our preliminary investigation of the data characteristics 

allowed us to identify missing values [8], abnormal 

conditions or interesting characteristics. In addition, we 

obtained an over all statistical distribution of the data 

sets. No missing values or anomalies were found in the 

yeast data. There were also no anomalies found among 

the data distributions of the neurogenesis data. 

However, 11.22% and 7.61% missing values were 

found in up and down-regulated data, respectively. 

With regard to the cancer genomics data, no missing 

values were identified in the three sub-data sets. 

However, one gene was filtered out because of a 

statistical irregularity (the standard deviation among 

duplicates was very different from the other genes). 

6.2 Clustering partitioned time points 

The experimentation process started by applying a K-

means clustering method, with K=2, to all partitioned 

time points. We then grouped together genes that 

always remained in the same cluster in the series of 

clustering on pairs of time points (Table 2). In order to 

simplify the process of biological validation, clusters 

without known genes were ignored. 

 

Table 2. Results of Clustering partitioned time points 

Data set 

# of 

clusters 

selected 

# of total 

clusters 

generated 

# of 

selected 

genes 

Total # of 

genes  

Yeast 120 1129 595 2321 

TGF-β1 6 6 330 330 

TGF-β1+SB 7 7 330 330 
Cancer 

Genomics
SB 7 7 330 330 

Up  123 273 1341 1747 
Neuro 

Down 151 233 976 1083 

6.3 Meaningful Clusters 

To identify meaningful clusters, we obtained new 

features (forward centroid slope) from the centroids of 

the clusters generated previously. The forward centroid 

slope values were then clustered using an agglomerative 

hierarchical clustering algorithm with both complete 

linkage and Ward’s methods [29 and 32]. The complete 

linkage method evaluates the distance between two 

clusters. Here, the longest distance that can be found 

between any pair of points from the two corresponding 

clusters is: 

JjIiDD ijJI ∈∈= ,},max{,  

  



                                                                                        

where D represents the distance between cluster I and J. 

Lower case i and j represent the elements in the 

corresponding clusters.  In Ward’s method, at each step, 

the central point is calculated for any possible 

combination of two clusters. Then, the total sum of 

squared distances from this point to all objects in this 

hypothetical cluster is evaluated. The hierarchical 

cluster trees were cut at a threshold determined using    

biological domain knowledge and visualization output.  

Yeast: The trees were cut at a threshold generating 5 

clusters, which could then be compared to the five 

major cell cycle phases. Three clusters from the 

complete linkage tree show time-dependent responses 

correlating with Early G1 (C5), Late G1 (C4) and S, G2 

and M (C1) phases (Figure 6). Since the S, G2 and M 

are quite close cell cycle phases, it is not surprising to 

see gene expression changes related to these phases 

condensed into a single cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cancer genomics: Since this data set was a small 

subset of original data, only a few clusters could be 

generated. Therefore it was not necessary to use 

agglomerative clustering to further merge these clusters 

for the three sub-sets. Following are some highlights of 

the clusters generated by the time-series clustering 

processes. 

For TGF-β1 (Figure7), the C2 cluster (containing 3 

genes) is significantly stimulated by the effect of TGF-

β1. Along the time course, the C4 cluster contains 

genes that are slightly down regulated; the C5 cluster 

contains slightly up-regulated genes, whereas the other 

clusters contain genes that fluctuate in no particular 

direction. 

In TGF-β1+SB (Figure 8), the C3 cluster contains 

genes significantly modulated by TGF-β1and repressed 

by the addition of SB (the same genes as in TGF-β1). 

The C2 and C5 clusters contain genes that are 

moderately stimulated by the addition of SB. Along the 

time course, the C4 and C6 clusters contain genes 

whose expression is slightly down regulated, the genes 

in cluster C7 fluctuate slightly, whereas the genes in C1 

change only minimally. 

 

 
Figure 7. Time series plot of cluster centroids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Time series plot of cluster centroids. 

 

 

 

 

 

 

Figure 6. Time series plot of cluster centroids 

 

 

 

 

 

In the last data subset (SB, Figure 9), C7 was 

significantly stimulated by TGF-β1 and significantly 

repressed by SB (same genes as the other two routes). 

C5 and C6 seem to be moderately repressed by the 

addition of SB. Along the time course, C3 goes down 

slightly, C2 goes up slightly, C4 fluctuates slightly, and 

C1 changes little. 

 

 
Figure 9. Time series plot of cluster centroids. 

 

 

 

 

 

 

 

 

 

 

 

 

Neurogenesis:  From the two data sets of up and 

down-regulated genes, 13 and 14 clusters were 

generated, respectively (Figures 10 and 11).  

Looking at the centroids of the 13 clusters of up-

regulated genes (Figure 10), we found that the patterns 

of C7 and C9 were quite similar. The centroids of these 

clusters show a small peak in expression at 21 days of 

RA exposure, returning to normal until the week 0 

time-point in which RA treatment is withdrawn.  From 

this point to the end of the time course, expression 

increases and implies that RA withdrawal stimulates 

  



                                                                                        

these two groups of genes. C1 and C2 have minimal 

changes at the beginning of RA treatment but these two 

groups of genes, as with C7 and C9, show an up-

regulation following RA withdrawal at week 0 which 

continues to increase up to 3 weeks. C13 first peaks at 

14 days and then declines. It is interesting that during 

maturation it increases immediately, before declining 

from week 2 onwards. C4 reaches its first peak at 7 

days, and then its downward trend continues to 21 days. 

It is recovered a little bit at day 28 and it starts to 

express again at week 0. C6 increases continuously up 

to 28 days. However, after RA withdrawal, it 

immediately declines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the centroids of the 14 down-regulated 

clusters (Figure 11), C1 does not change much up to 28 

days. Then, after RA withdrawal, it slowly goes down, 

and it seems moderately repressed during maturation.  

C7 and C9 have similar patterns except that C9 is off-

set from C7 by one time point. Both clusters 

consistently and smoothly go down starting at 7 and 14 

days, respectively, followed by steep declines after RA 

withdrawal. C8 contains small changes at the 

beginning. It decreases at 14, 21 and 28 days, then goes 

up after RA withdrawal before declining again. C10 and 

C11 have a similar pattern, with a downward trend 

during treatment with RA and did not consistently 

change after RA withdrawal except for a late increase at 

week 3. 

6.4 Association between Clusters  

Our next task was to identify any associations between 

the clusters. This was done first by deriving forward 

centroid slope data from all the clusters identified 

during the previous step. An equal-width-interval 

discretization method was used to discretize the 

numeric data [31]. The selection criteria for the 

association rules was based on confidence, complexity 

and the coverage of the rules. We use ‘ ’ to indicate 

the simultaneous changes. 

 

 

 
Figure 11. Centroid of down-regulated clusters 

 

 

 

 

 

 

 

 

 

 

Figure 10. Centroid of up-regulated clusters 

 

 

 

 

 

Yeast cell cycle: We used 3 as the number of 

intervals. The associations were between C1, C4 and 

C5 (Figure 12). Figure 13 shows the relationship among 

clusters. C1 (0.2…0.56) C4 (–0.42… 0.12)  C5 (-

0.68… –0.31).  

 

 C1 C2 C3 C4 C5

C1 C2 C3 C4 C5  
Figure 12. Associations in clusters in Yeast data 

 

 

 

 

 

 

 

Cancer genomics:  Using 2 intervals the following 

associations were identified. 

(i) For TGF-β1(Figure 14) C6 (0.92..1.03)  C4 

(0.86..1.4)  C5 (1.09..1.33). 

 

 

Figure 13. Association Graph for Yeast data 

 

 

 

 

 

 

 

 

 
 

 

(ii) For TGF-β1 + SB (Figure 15) The identified 

association was: C2 (1.23..1.85)  C5 (1.9..2.27). 

  



                                                                                        

(iii) For SB (Figure 16) The identified association 

was: C4 (1.42..1.81) C2 (1.06..1.25)  C5 

(1.36..1.97)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Neurogenesis: Three intervals were used. For up-

regulated genes, the associations were: C3 (00.5 … 

0.31)  C10 (-0.56 … 0.07) (Figure 17). And for 

down-regulated data, the identified associations were, 

C5 (-0.56 … -0.26)  C1 (-0.36 to 0.0) (Figure 18). 
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Figure 18. Association for down regulated genes  
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Figure 14. Association graph of TGF-β1 
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Figure 15. Association graph of TGF-β1+ SB 

 

 

 

 

 

 

 

6.5 Most informative genes 
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Figure 16. Association graph of SB only 

The following is a summary of the contents of all 

clusters that resulted from merging, along with 

highlights of some interesting results. 

Yeast: Following several years of research on this 

data set, many genes have been annotated and their 

functions have been identified in the cell cycle. 

Compared to other studies using yeast data, we have a 

better coverage of the previously well-characterized 

genes (see Table 3 and Figure 19). The remaining genes 

that are included in these clusters are of unknown 

function, but may now be studied to validate their 

predicted relations to the cell cycle and elucidate their 

functions. For example, transcription of SWI5 and 

CLB1 is G2/M specific and activated in G2. These two 

genes are included in cluster C1 in our study (See 

Figure 20). This shows synchronization between these 

two genes.  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13  
 

 
 

Figure 17. Association for up-regulated clusters 

 
Table 3. Coverage of cell cycle related genes 

 

Complete Linkage 
5Clusters 

Early 
G1 

Later 
G1 S G2 M 

C1 2 7 22+1* 22+1* 19+2* 

C2 2 3 3 1+ 3* 1 + 1* 

C3 2 2 8 2 + 1* 2 +1* 

C4 4 70 13 2 1 

C5 22 5 1 1 + 1* 7 

Cluster assignment 22 (C5) 70 (C4) 23 (C1) 23 (C1) 
21 

(C1) 

Total ** 32 87 48 28 30 

 

* The gene(s) also belongs to other cell cycle phases 

** Total number of previously well-characterized genes 

  



                                                                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cancer genomics: It is very interesting to see three 

genes that always stay together in the same cluster in 

the analyses of three sub-data sets (Figures 21, 22 and 

23). The three clusters, to which these genes belong, are 

also discussed in Section 6.2 for their characteristic 

change over the time course. These genes are up 

regulated by the addition of TGF-β1, but repressed in 

the presence of SB. These genes have been highlighted 

in another study [18] using this breast cancer data set. 
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  Figure 19. Comparison of number of previously well-   

  characterized genes detected by different methods.  

  * is the method used in the current study. 
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Figure 22. Genes in TGF- β1 +SB 
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Figure 23. Genes in SB only 

 

 

 

 

 

Figure 20. Time course synchronization of two genes. 

 

 

 

 

 

 

 

 

 

 

Neurogenesis: Here we repeat the same process after 

removing all the genes identified in the association 

rules generated in the first run. These analyses discover 

associations among genes in these clusters. 

(i) Up regulated genes: The associations among the 

genes identified in two runs of the analysis are listed in 

Table 4 and expression patterns are depicted in Figure 

24 and 25. 

(ii) Down regulated genes: Similarly, the associations 

among the genes identified in two runs of the analysis 

are listed in Table 5 and expression patterns are shown 

in Figures 26 and 27. 
 

 

Table 4. Associations of up-regulated genes 

 
TGF_b

 
 

Figure 21. Genes in TGF-β1 

run1

152940 (C10) 152940 (C10)

470712 (C3) 470712 (C3)

325296 (C3) 325296 (C3)

122906 (C3) 122906 (C3)

run2

244896 (C3) 244896 (C3)

210782 (C3) 210782 (C3)

 

 

 

 

 

 

 
 
 

  



                                                                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Table 5. Associations of down-regulated genes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Up-regulated genes in the first run of 

association rules. 
 

Figure 27. Up-regulated genes in the second run of 

association rules. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 25. Up-regulated genes in the second run of 

association rules. 

7. Conclusions 

We have described a novel method for identifying 

interesting patterns in time-series microarray data 

obtained from multiple experiments. The experimental 

results have shown that our approach not only identifies 

groups of genes with interesting patterns, but is also 

capable of finding associations between these clusters 

as well as associations between individual genes in each 

cluster. This approach could help in the identification of 

gene clusters that influence the behavior of other gene 

clusters at any time point. 

The most interesting part of our results was generated 

using the well-known yeast data set that has been used 

in several previous studies. The patterns that we 

identified are consistent with those identified by another 

study performed on this data set. The results from the 

“cancer genomics” and ”neurogenesis” data sets, 

indicate that the application of machine learning 

methods on partitioned time-series data can help in the 

identification of interesting gene expression patterns.  

Run 1

325955(C5) 325955(C5)

NoSeq_UHN19k_49.2_C10(C5) NoSeq_UHN19k_49.2_C10(C5)

NoSeq_UHN19k_48.2_C6(C5) NoSeq_UHN19k_48.2_C6(C5)

Run 2

137531(C1) 137531(C1)

174020(C1) 174020(C1)

293310(C1) 293310(C1)

325035(C1) 325035(C1)

5191118_UHN19k_31.1_D7(C1) 5191118_UHN19k_31.1_D7(C1)

N/A_UHN19k_24.3_C10(C1) N/A_UHN19k_24.3_C10(C1)

NoSeq_UHN19k_40.3_G12(C1) NoSeq_UHN19k_40.3_G12(C1)

49787(C5) 49787(C5)

136040(C5) 136040(C5)

486795(C5) 486795(C5)

1712682_UHN19k_14.2_B7(C5) 1712682_UHN19k_14.2_B7(C5)

4691672_UHN19k_45.1_H3(C5) 4691672_UHN19k_45.1_H3(C5)

Based on our approach, we present the results 

describing associations between gene clusters, thereby 

focusing on a specific range of gene expressions where 

an association is strongly valid. For example, genes in 

cluster A that change in a certain range influence genes 

in cluster B to change in a certain other range. This 

explains the association between the gene clusters, and 

is based on a particular range of the expression levels. 

 
Figure 26. Down-regulated genes in the first run of 

association rules. 

8. Future Research 

In this study, we present a novel method to identify 

interesting and useful patterns in time series microarray 

data, which reveal the associations among groups of 

genes and individual genes in these clusters. These 

associations will be further studied to identify the 

causal relationships using Hidden Markov Models and 

Bayesian Networks for the identification of gene 

regulatory networks. 
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