
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of the International Society for Computers and Their Applications
(ISCA) 14th International Conference on Intelligent and Adaptive Systems and
Software Engineering (IASSE-2005), 2005

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=09d77fb1-40ec-459e-a11d-473e39b316aa

https://publications-cnrc.canada.ca/fra/voir/objet/?id=09d77fb1-40ec-459e-a11d-473e39b316aa

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A Weighted-Tree Simplicity Algorithm for Similarity Matching of Partial

Product Descriptions
Lang, L.; Sarker, B.K.; Bhavsar, V.C.; Boley, Harold

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

A Weighted-Tree Simplicity Algorithm for

Similarity Matching of Partial Product

Descriptions *

Lang, L., Sarker, B.K., Bhavsar, V.C., and Boley, H.
July 2005

* published in the Proceedings of The International Society for Computers

and Their Applications (ISCA) 14th International Conference on Intelligent

and Adaptive Systems and Software Engineering (IASSE-2005). Toronto,

Ontario, Canada. July 20-22, 2005. pp. 55-60. NRC 48534.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

A WEIGHTED-TREE SIMPLICITY ALGORITHM FOR SIMILARITY MATCHING OF

PARTIAL PRODUCT DESCRIPTIONS

 Lu Yang Harold Boley

 Biplab K. Sarker Institute for Information Technology e-Business

 Virendrakumar C. Bhavsar National Research Council

 Faculty of Computer Science Fredericton, New Brunswick, Canada E3B 9W4
 University of New Brunswick harold.boley AT nrc-cnrc.gc.ca

 Fredericton, New Brunswick, Canada E3B 5A3

 {lu.yang, sarker, bhavsar} AT unb.ca

Abstract

Our weighted-tree similarity algorithm matches
buyers and sellers in e-Business environments. We use
arc-labeled, arc-weighted trees to represent the products
(or services) sought/offered by buyers/sellers. Partial
product descriptions can be represented via subtrees
missing in either or both of the trees. In order to take into
account the effect of a missing subtree on the similarity
between two trees, our algorithm uses a (complexity or)
simplicity measure. Besides tree size (breadth and depth),
arc weights are taken into account by our tree simplicity
algorithm. This paper formalizes our buyer/seller trees
and analyzes the properties of the implemented tree
simplicity measure. We discuss how this measure captures
business intuitions, give computational results on the
simplicity of balanced k-ary trees, and show that they
conform to the theoretical analysis.

Key Words

 Arc-labeled and arc-weighted tree, tree similarity, tree

simplicity, balanced k-ary trees, e-Business, buyer and

seller trees.

1. INTRODUCTION

We proposed earlier a weighted-tree similarity

algorithm for multi-agent systems in e-Business

environments [1], [8]. In e-Business environments, buyers

or sellers seek matching sellers or buyers by exchanging

the descriptions of products/services carried by them [3].

Trees are a common data structure for information

representation in various areas, such as image comparison,

information search and retrieval, clustering, classification,

Case-Based Reasoning (CBR) and so on. In e-Business

environments, we can also use trees instead of the

commonly used key words/phrases to represent the

product/service requirements and offers from buyers and

sellers. Furthermore, we use node-labeled, arc-labeled and

arc-weighted trees to represent parent-child relationship of

product/service attributes. Thus, not only node labels but

also arc labels can embody semantic information. The arc

weights of our trees express the importance of arcs

(product/service attributes). One objective of this paper is

to formally define our arc-labeled and arc-weighted trees.

When we compute the similarity of two trees, it is

common that a subtree in one tree might be missing in the

other one. The similarity of the missing subtree and the

empty tree is obtained by computing the simplicity of the

missing subtree. An intuitive requirement of the tree

simplicity measure is that wider and deeper trees lead to

smaller tree simplicity values. However, since our trees

are arc-weighted, we also take into account the

contribution from arc weights to the tree simplicity. Each

arc weight is multiplied with the simplicity value of the

recursive subtree simplicity underneath. Hence, another

objective of this paper is to analyze and evaluate the

mathematical properties of our tree simplicity measure.

In our approach, the tree simplicity values are in the

real interval [0, 1]. The simplest tree is a single node

whose simplicity is defined as 1.0. Our tree simplicity

measure is formalized as a recursive function. According

to this function, the simplicity value of an infinite tree

approaches 0.0. We conduct experiments on balanced k-
ary tree whose arc weights are averaged at each level. The

computational results conform to the properties and

requirements of our tree simplicity measure.

This paper is organized as follows. Formal definitions

of our trees and an overview of our tree similarity

algorithm are presented in the following section. In

Section 3, we provide the formal descriptions of our tree

simplicity measure. Section 4 presents the theoretical and

computational results of our tree simplicity measure on

balanced k-ary trees. Finally concluding remarks are given

in Section 5.

2. ARC-LABELED, ARC-WEIGHTED TREES AND

SIMILARITY

In a common e-marketplace, both buyers and sellers

advertise their product/service requirements and offers. In

order to find matching buyers or sellers, a similarity

 1

computation between them is a must to obtain a ranked

similarity list for sellers or buyers. We use arc-labeled and

arc-weighted trees to represent product/service

requirements and offers. Previous tree similarity (distance)

algorithms mostly dealt with trees that have node labels

only [4], [5], whether they were ordered [7] or unordered

[6]. Due to our unique tree representation for product

descriptions, we developed a new weighted-tree similarity

algorithm [1], [8]. In this section, we present the

definitions of our trees which represent the

product/service requirements and offers from buyers and

sellers. We also present a brief description of our

proposed tree similarity algorithm [1].

2.1 Definitions

Definition 1. Node-labeled trees. A tree T = (V, E, LV)

is a 3-tuple where V, E and LV are sets of nodes, arcs and
node labels, respectively, which satisfy the following
conditions:
1. One element in V is designated as the 'root'.
2. Each element in E connects a pair of elements in V.
3. There is a unique directed path, consisting of a
sequence of elements in E, from the root to each of the
other elements in V.
4. There is an (n→1, n ≥1) mapping from the elements in
V to the elements in LV (i.e. different nodes can carry the
same labels).

Trees as defined above with only node labels cannot

conveniently represent the attributes of products/services,

and can lead to ambiguity in some cases.

For example, the tree in Figure 1 describes a used car.

It is easy to see that this is a small Ford sedan with V-8

engine whose model is Taurus. However, since this is a

used car, we cannot figure out what the numbers “1999”

and “10000” mean. Although “1999” tends to be the year,

it may stand for the price or mileage as well. Similarly,

“10000” can also represent the price or mileage of it.

Therefore, we add labels to arcs which represent

product/service attributes to remove the ambiguity. Figure

2 shows the arc-labeled tree describing the used car

shown in Figure 1. We formalize our arc-labeled tree

based on Definition 1.

Definition 2. Arc-labeled trees. An arc-labeled tree is a
4-tuple T = (V, E, LV, LE) of a set of nodes V, a set of arcs
E, a set of node labels LV, and a set of arc labels LE such

that (V, E, LV) is a node-labeled tree and there is an (n→1,
n ≥1, fan-out-unique) mapping from the elements in E to
the elements in LE (i.e. non-sibling arcs can carry the
same labels).

Car

For algorithmic convenience we always keep arc

labels of siblings in lexicographical order. Now suppose

the tree in Figure 2 should represent the requirements of a

car buyer. This buyer might have special interests in some

car attributes. For example, he/she may want a “Ford” i.e.

the maker of the car is quite important to him/her but the

“Year” is not that important. In order to reveal special

preferences indicated by buyers/sellers, we allow them to

specify an importance value (arc weight) for each arc.

Figure 3 shows the tree with arc weights. According to

the corresponding Definition 3, we represent our arc-

labeled and arc-weighted tree as follows.

Definition 3. Arc-labeled, arc-weighted trees. An arc-
labeled, arc-weighted tree is a 5-tuple T = (V, E, LV, LE,
LW) of a set of nodes V, a set of arcs E, a set of node
labels LV, a set of arc labels LE and a set of arc weights
LW = [0,1] such that (V, E, LV, LE) is an arc-labeled tree
and there is an (n→1, n ≥1) mapping from the elements in
E to the elements in LW (i.e. different arcs can carry the
same weights).

Finally, Definition 4 introduces a user and

algorithmic convenience, also illustrated in Figure 3.

Definition 4. Normalized arc-labeled, arc-weighted

trees. A normalized arc-labeled, arc-weighted tree is an
arc-labeled, arc-weighted tree T = (V, E, LV, LE, LW)
having a fan-out-weight-normalized (n→1, n ≥1) mapping
from the elements in E to the elements in LW, i.e. the
weights of every fan-out add up to 1.0.

Such normalized trees will be assumed throughout

for the rest of this paper.

Car

Ford Sedan

10000
Small Taurus V-8

1999

Figure 1. A node-labeled tree (a used car product).

Ford Sedan

10000

Small TaurusV-8

1999

Figure 2. An arc-labeled tree.

Category

Miles

Year
Make

Engine Model Size

0.8

Car

Ford Sedan

10000

Small TaurusV-8

1999

Figure 3. A (normalized) arc-labeled, arc-weighted tree.

Category
Year Make

Engine Model Size

0.1 0.1

0.7
Miles

0.5 0.50.3

 2

2.2 Tree Similarity

Here, we briefly review our proposed tree similarity

algorithm [1], [8]. Generally speaking, our algorithm

traverses input trees top-down (root-leaf) and then

computes their similarity bottom-up. If two non-empty

(sub)trees have identical root node labels, their similarity

is computed by a recursive top-down (root-leaf) traversal

through the subtrees that are accessible on each level via

identical arc labels. The recursion is terminated by two

(sub)trees (root-leaf) that are leaf nodes, in which case

their similarity is 1.0 if their node labels are identical and

0.0 otherwise. Every tree is divided into some subtrees. So,

the top-down traversal and bottom-up computation is

recursively employed for every pair of subtrees.

Our algorithm has been incorporated into a subproject

of the eduSource project [2]. A goal of this project is to

search procurable learning objects for learners. The search

results for a learner are represented as a percentage-ranked

list of learning objects according to their similarity values

with the learner’s query. Figure 4 shows a segment of a

learner tree. Another application of the algorithm is our

Teclantic portal (http://teclantic.cs.unb.ca) which matches

projects according to project profiles represented as trees.

3. TREE SIMPLICITY

During tree similarity computation, when a subtree in

tree T1 is missing in tree T2 (or vice versa), we compute

the simplicity of the missing subtree. Our tree simplicity

measure takes into account not only the node degree

(breadth) at each level and leaf node depth but also the arc

weights for the recursive tree simplicity computation.

Intuitively, the simpler the single subtree in T1, the larger

its simplicity and thus the larger its similarity to the

corresponding empty tree in T2. So, we use the simplicity

as a contribution to the similarity of T1 and T2. Using our

tree simplicity measure, the simplicity converges towards

0.0 when the tree is infinite. However, the simplest tree is

a single node and we define that its simplicity is 1.0.

 In tree T1 of Figure 5, the subtree rooted at node

“Ford” under the arc “Make” is missing in T2. Our tree

similarity algorithm passes this missing subtree to the

treeplicity function to compute its simplicity. Figure 6

shows the pseudo code of this function.

Input: The depth degradation index i. A single tree T.

Output: The simplicity value of T.

Initialization: treeplideg = 0.5 //depth degradation factor

treeplicity (i ,T)

Begin

 If T only contains a single node return i;
 endif

 else
 sum=0;

 for (j =0; j < root node degree of T; j++);

 sum+=

 (weight of the jth arc) *treeplicity(i*treeplideg, Tj);

 //Tj is the subtree under the jth arc

 endfor
 TreeSimplicity =(1/root node degree of T) * sum;

 return TreeSimplicity;

 endelse

 End.

When calling treeplicity with a depth degradation

index i and a single tree T as inputs, our simplicity

measure is defined recursively to map an arbitrary single

tree T to a value from [0, 1], decreasing with both the

node degree at each level and leaf node depth. The

recursion process terminates when T is a leaf node. For a

(sub)tree, simplicity is computed by a recursive top-down

traversal through its subtrees. Basically, the simplicity

value of T is the sum of the simplicity values of its

subtrees multiplied with arc weights from [0, 1], a subtree

depth degradation factor ≤ 0.5, and the reciprocal of root

node degree of a subtree that is from (0, 1].

 For any subtree Tj underneath an arc lj, we multiply

the arc weight of lj with the recursive simplicity of Tj. To

enforce smaller simplicity for wider trees, the reciprocal

of the node degree is used on every level. On each level of

deepening, the depth degradation index i is multiplied

with a global depth degradation factor treeplideg ≤ 0.5

Lom

Rights-set

Yes HTML Don’t Care

Technical-set

rights

copyrightandother

restrictions

technical

descriptions
format

otherplatform

requirements

Don’t Care

0.16667 0.16665

0.8
0.2

0.6 0.4

… …

Figure 4. Segment of a learner tree.

Figure 6. Pseudo-code of the tree simplicity algorithm.

0.8

Car

Ford
Sedan

10000

Small Taurus V-8

1999

Figure 5. Arc-labeled, arc-weighted trees.

Category

Miles

Yea

Car

Sedan

rMake

Engine Model Size

0.1 0.1

0.5 0.5 0.3
0.7

10000

Small

1999

Category

Miles

Year
0.4

0.6

Size0.7
0.3

T1 T2

 3

and the result is the new value of i in the recursion. We

always assume that the value of treeplideg is 0.5.

 The smaller the treeplideg factor, the smaller the tree

simplicity value. Based on the sum of the infinite

decreasing geometric progression

...
2

1
...

2

1

2

1
2

++++
n

 being 1, we assume that

treeplideg is 0.5 in order to enforce the smallest

acceptable degradation through the recursion: this

guarantees that the simplicity values of finite trees are

always smaller than 1. For leaf nodes found on any level,

the current i value is their simplicity.

Our tree simplicity algorithm is given as a recursive

function shown below.

 (1)

where,

Š(T): the simplicity value of a single tree T

DI and DF: depth degradation index and depth degradation

factor

d: depth of a leaf node

m: root node degree of tree T that is not a leaf

wj: arc weight of the jth arc below the root node of tree T

Tj: subtree below the jth arc with arc weight wj

The initial value of DI represents the simplicity value

of the node with depth 0 (d = 0). Therefore, the simplicity

of a tree that is a single node equals to DI. Since an empty

tree is meaningless in our tree simplicity algorithm, we

define that the simplicity value of a “single-node” tree is

1.0 which also implies that DI = 1.0. As mentioned before,

the value of DF is defined as 0.5 because of the

employment of decreasing geometric progression.

When a tree horizontally and vertically grows

infinitely, the value of m and d will be infinite. Therefore,

both (DF)d and 1/m approach 0.0. Since both wj and Š(Tj)

are in the interval [0, 1], equation (1) approaches 0.0

when m and d are infinite.

 Now, in order to clarify our tree simplicity algorithm,

we show the computation of simplicity for an arbitrary

tree (Figure 7) with the following illustrative example.

In Figure 7, we show the depth (d) and its

corresponding depth degradation index (DI) on the right

hand side of tree T. According to equation (1), the

simplicity of this tree is computed as follows.

Š(T) =
4

1
(0.2*Š(TB)+0.1* Š(TB C)+

0.3* Š(TD)+ 0.4* Š(TE)) (3)

In equation (3), the denominator 4 is the degree of the

root node of tree T. TB, TB C, TD and TE represent the

subtrees rooted at nodes B, C, D and E respectively. The

simplicity values for subtrees (leaf nodes) TC and TD are

their values of DI, 0.5. We recursively use equation (1) for

the simplicity computation of subtrees TBB and TE and get

equations (4) and (5), respectively.

Š(TB) =B

3

1
(0.8*Š(TF)+0.1* Š(TG)+ 0.1* Š(TH)) (4)

 Š(TE) =
2

1
(0.5*Š(TI)+0.5* Š(TJ)) (5)

Simplicity values for subtrees (leaf nodes) TF, TG, TH,

TI and TJ are their DI value 0.25. Therefore, Š(TB) = B

3

25.0

and Š(TE) =
2

25.0
. Consequently, we obtain the value of

Š(T) 0.06667.

4. ANALYSIS

In this section, we provide the theoretical and

computational results to analyze the properties of the

proposed tree simplicity measure given in Section 3. For

this purpose, we consider balanced k-ary trees, although

we do not restrict the degree and depth of each node in the

tree. The theoretical results on balanced k-ary tree derived

from equation (1) are a non-recursive function with two

variables k and d. A k-ary tree is a normalized arc-labeled,

arc-weighted tree according to Definition 4 such that the

value of m in equation (1) is always a fixed k. The

computational results indicate that tree simplicity values

smoothly decrease with increasing k and d, which

conform to our requirement. Here, both k and d are equal

{ =Š
I

)(T

dD)(FD ⋅

∑
=

⋅
m

TŠw
m

1j

jj)(
1

if T is a leaf node,

otherwise.

lim
∞→
∞→

d
m

Š(T) = 0 (2)

Figure 7. An illustrative tree T with d and DI.

A

B

F

b

0.8

0.2

0.5 0.5

C D E
c d e

f
g

h i j

G H I J

0.1 0.3
0.4

0.1
0.1

 1.0

D

 0.5

 0.25

0

1

2

d I

 4

to or greater than 1. When both of them are equal to 0, the

tree is a single node which has been analyzed in Section 3.

In a balanced k-ary tree shown in Figure 8, subtrees

under nodes A1 to Ak are shown by triangles since this

tree may have arbitrary depth. All leaf nodes are at the

same level; therefore, all leaf nodes have identical depth

which is also the tree depth. All arc weights for sibling

arcs are averaged. Therefore, we get arc weight 1/k for

each arc.

For this special case, equation (1) is simplified as

 (6)

where, Tk-ary represents a k-ary tree. After incorporating

the values of DI and DF, we get

 (7)

 Although equation (2) reveals how the values of m

(here, k) and d affect the tree simplicity values, we show

the plots for equation (7) to get more intuitive

understandings.

 Plots generated by Matlab in Figure 9 represent the

trend of tree simplicity values for varying d, when k is

fixed to 1, 2 and 3. When k is fixed, equation (7) is an

exponential function. According to equation (2), the tree

simplicity should approach 0.0 when k and d approach

infinity. In e-Business/e-Learning environments, it is most

likely that trees with very big depth would not arise. For

example, in Figure 4, the depth of the given tree is 2. It is

evident that we can show the complete tree with this

depth for a learner. Therefore, we consider changes to the

value of d from 1 to 40 in the subsequent figures. This

applies to the value of k as well.

 Each plot in Figure 9 has the same trend: tree

simplicity decreases when the depth (d) of the tree

increases. However, for the same d, smaller the value of k,

bigger is the tree simplicity. Furthermore, bigger the value

of k, faster the plot approaches 0.0. This agrees with our

analysis of equation (2).

A

 The plots in Figure 10 represent the trend of tree

simplicity values for varying k, when the value of d is

fixed to 1, 2 and 3. When d is fixed, equation (7) is a

polynomial function.

 Plots in Figure 10 have trends similar to those in

Figure 9. The tree simplicity decreases when the value of

k increases. However, for the same k, smaller the value of

d, bigger is the tree simplicity. Furthermore, bigger the

value of d, faster the plot approaches 0.0.

A1

ll k1k1/ k1/

Ak

Figure 8. A balanced k-ary tree.

Figure 9. Simplicity as a function of d.

I(DŠ d ⋅⋅= F)
1

)(D
k

T d
aryk−

0.15.0)
1

(⋅⋅=Š)(−
dd

aryk
k

T

Figure 10. Simplicity as a function of k.

 5

The maximum simplicity value for a k-ary tree is 0.5

when both k and d are 1 (1-ary tree). An example tree of

this case is shown in Figure 11.

However, both k and d in equation (7) may have

arbitrary values. In our computation, we consider every

combination when both of them vary from 1 to 40. This

means that the maximum root node degree (k) and the

maximum depth (d) of the tree are equal to 40. Figure 12

shows the 3-dimensional plot of equation (7). It is easy to

find that even when the values of k and d approach 40

(not infinity), the simplicity values are very close to 0.0.

This agrees with our requirement that simpler the tree,

bigger is the simplicity.

5. CONCLUSION

We have used arc-labeled, arc-weighted trees to

represent the product/service descriptions of buyers/

sellers in e-Business/e-Learning environments. We have

formalized the definitions of our trees and conducted

experiments on balanced k-ary tree. The computational

results on this special case agree with our requirement.

Our trees are arbitrary trees without restrictions on

node degree and depth. A simpler tree possesses a bigger

simplicity value. The simplest tree in our algorithm is a

single node and its simplicity is defined as 1.0. The most

complex tree is an infinite tree. The simplicity value for

an infinite tree approaches 0.0. We have formalized our

tree simplicity measure as a recursive function.
A

B
Figure 11. The k-ary tree when both k and d equal to 1.

a

In future, we will further analyze more on the

properties of the general recursive function of our tree

simplicity measure and justify our approach not only for

k-ary trees.

1.0

ACKNOWLEDGEMENTS

 We thank Joseph D. Horton, University of New

Brunswick, for discussions about tree definitions and tree

simplicity formalizations. We also thank the NSERC for

its support through discovery grants of Virendra C.

Bhavsar and Harold Boley.

REFERENCES

[1] V. C. Bhavsar, H. Boley and L. Yang, “A weighted-

tree similarity algorithm for multi-agent systems in e-

business environments,” Computational Intelligence,

vol.20, no.4, pp.584-602, 2004.

[2] H. Boley, V. C. Bhavsar, D. Hirtle, A. Singh, Z. Sun

and L. Yang, “A match-making system for learners and

learning objects,” Learning & Leading with Technology,
International Society for Technology in Education,

Eugene, Oregon, 2005 (to appear).

[3] A. Chavez and P. Maes, “Kasbah: An agent

marketplace for buying and selling goods,” Proceedings

of the First International Conference on the Practical

Application of Intelligent Agents and Multi-Agent

Technology, London, pp.75-90, 1996.

[4] T. Liu and D. Geiger, “Approximate tree matching

and shape similarity,” Proceedings of the Seventh

International Conference on Computer Vision, Kerkyra,

pp.456-462, 1999.

[5] S. Lu, “A tree-to-tree distance and its application to

cluster analysis,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-1(2), pp.219-224, 1979.

[6] D. Shasha, J. Wang and K. Zhang, “Exact and

approximate algorithm for unordered tree matching,”

IEEE Transactions on Systems, Man and Cybernetics,

vol.24, no.4, pp.668-678, 1994.

Figure 12. Simplicity as a function of d and k.

[7] J. Wang, B. A. Shapiro, D. Shasha, K. Zhang, and K.

M. Currey, “An algorithm for finding the largest

approximately common substructures of two trees,” IEEE
Transactions on Pattern Analysis and Machine
Intelligence, vol.20, pp.889-895, 1998.

[8] L. Yang, M. Ball, V. C. Bhavsar and H. Boley,

“Weighted partonomy-taxonomy trees with local

similarity measures for semantic buyer-seller

matchmaking,” Proceedings of 2005 Workshop on

Business Agents and the Semantic Web, Victoria, Canada,

pp. 23-35, May 8, 2005.

 6

