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Abstract 

 

Our weighted-tree similarity algorithm matches 
buyers and sellers in e-Business environments. We use 
arc-labeled, arc-weighted trees to represent the products 
(or services) sought/offered by buyers/sellers. Partial 
product descriptions can be represented via subtrees 
missing in either or both of the trees. In order to take into 
account the effect of a missing subtree on the similarity 
between two trees, our algorithm uses a (complexity or) 
simplicity measure. Besides tree size (breadth and depth), 
arc weights are taken into account by our tree simplicity 
algorithm. This paper formalizes our buyer/seller trees 
and analyzes the properties of the implemented tree 
simplicity measure. We discuss how this measure captures 
business intuitions, give computational results on the 
simplicity of balanced k-ary trees, and show that they 
conform to the theoretical analysis.  

 
Key Words 

 

       Arc-labeled and arc-weighted tree, tree similarity, tree 

simplicity, balanced k-ary trees, e-Business, buyer and 

seller trees. 
 

1.  INTRODUCTION 

       

We proposed earlier a weighted-tree similarity 

algorithm for multi-agent systems in e-Business 

environments [1], [8]. In e-Business environments, buyers 

or sellers seek matching sellers or buyers by exchanging 

the descriptions of products/services carried by them [3]. 

 

Trees are a common data structure for information 

representation in various areas, such as image comparison, 

information search and retrieval, clustering, classification, 

Case-Based Reasoning (CBR) and so on.  In e-Business 

environments, we can also use trees instead of the 

commonly used key words/phrases to represent the 

product/service requirements and offers from buyers and 

sellers. Furthermore, we use node-labeled, arc-labeled and 

arc-weighted trees to represent parent-child relationship of 

product/service attributes. Thus, not only node labels but 

also arc labels can embody semantic information. The arc 

weights of our trees express the importance of arcs 

(product/service attributes). One objective of this paper is 

to formally define our arc-labeled and arc-weighted trees. 

 

When we compute the similarity of two trees, it is 

common that a subtree in one tree might be missing in the 

other one. The similarity of the missing subtree and the 

empty tree is obtained by computing the simplicity of the 

missing subtree. An intuitive requirement of the tree 

simplicity measure is that wider and deeper trees lead to 

smaller tree simplicity values. However, since our trees 

are arc-weighted, we also take into account the 

contribution from arc weights to the tree simplicity. Each 

arc weight is multiplied with the simplicity value of the 

recursive subtree simplicity underneath. Hence, another 

objective of this paper is to analyze and evaluate the 

mathematical properties of our tree simplicity measure. 

  

In our approach, the tree simplicity values are in the 

real interval [0, 1]. The simplest tree is a single node 

whose simplicity is defined as 1.0. Our tree simplicity 

measure is formalized as a recursive function. According 

to this function, the simplicity value of an infinite tree 

approaches 0.0. We conduct experiments on balanced k-
ary tree whose arc weights are averaged at each level. The 

computational results conform to the properties and 

requirements of our tree simplicity measure. 

 

This paper is organized as follows. Formal definitions 

of our trees and an overview of our tree similarity 

algorithm are presented in the following section. In 

Section 3, we provide the formal descriptions of our tree 

simplicity measure. Section 4 presents the theoretical and 

computational results of our tree simplicity measure on 

balanced k-ary trees. Finally concluding remarks are given 

in Section 5. 

 

2.  ARC-LABELED, ARC-WEIGHTED TREES AND 

SIMILARITY 

 

In a common e-marketplace, both buyers and sellers 

advertise their product/service requirements and offers. In 

order to find matching buyers or sellers, a similarity 
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computation between them is a must to obtain a ranked 

similarity list for sellers or buyers. We use arc-labeled and 

arc-weighted trees to represent product/service 

requirements and offers. Previous tree similarity (distance) 

algorithms mostly dealt with trees that have node labels 

only [4], [5], whether they were ordered [7] or unordered 

[6]. Due to our unique tree representation for product 

descriptions, we developed a new weighted-tree similarity 

algorithm [1], [8]. In this section, we present the 

definitions of our trees which represent the 

product/service requirements and offers from buyers and 

sellers. We also present a brief description of our 

proposed tree similarity algorithm [1]. 

 

2.1 Definitions 

 

Definition 1. Node-labeled trees. A tree T = (V, E, LV) 

is a 3-tuple where V, E and LV are sets of nodes, arcs and 
node labels, respectively, which satisfy the following 
conditions: 
1. One element in V is designated as the 'root'. 
2. Each element in E connects a pair of elements in V.  
3. There is a unique directed path, consisting of a 
sequence of elements in E, from the root to each of the 
other elements in V.                                                 
4. There is an (n→1, n ≥1) mapping from the elements in 
V to the elements in LV (i.e. different nodes can carry the 
same labels). 

 

Trees as defined above with only node labels cannot 

conveniently represent the attributes of products/services, 

and can lead to ambiguity in some cases. 

For example, the tree in Figure 1 describes a used car.  

It is easy to see that this is a small Ford sedan with V-8 

engine whose model is Taurus. However, since this is a 

used car, we cannot figure out what the numbers “1999” 

and “10000” mean. Although “1999” tends to be the year, 

it may stand for the price or mileage as well. Similarly, 

“10000” can also represent the price or mileage of it. 

Therefore, we add labels to arcs which represent 

product/service attributes to remove the ambiguity. Figure 

2 shows the arc-labeled tree describing the used car 

shown in Figure 1. We formalize our arc-labeled tree 

based on Definition 1. 

 

Definition 2.  Arc-labeled trees. An arc-labeled tree is a 
4-tuple T = (V, E, LV, LE) of a set of nodes V, a set of arcs 
E, a set of node labels LV, and a set of arc labels LE such 

that (V, E, LV) is a node-labeled tree and there is an (n→1, 
n ≥1, fan-out-unique) mapping from the elements in E to 
the elements in LE (i.e. non-sibling arcs can carry the 
same labels). 

 

 
Car 

 

 

 

 

 

 
 

For algorithmic convenience we always keep arc 

labels of siblings in lexicographical order. Now suppose 

the tree in Figure 2 should represent the requirements of a 

car buyer. This buyer might have special interests in some 

car attributes. For example, he/she may want a “Ford” i.e. 

the maker of the car is quite important to him/her but the 

“Year” is not that important. In order to reveal special 

preferences indicated by buyers/sellers, we allow them to 

specify an importance value (arc weight) for each arc. 

Figure 3 shows the tree with arc weights. According to 

the corresponding Definition 3, we represent our arc-

labeled and arc-weighted tree as follows. 

 

 

 

 

 

 

 

 

 

 

Definition 3. Arc-labeled, arc-weighted trees. An arc-
labeled, arc-weighted tree is a 5-tuple T = (V, E, LV, LE, 
LW) of a set of nodes V, a set of arcs E, a set of node 
labels LV, a set of arc labels LE  and a set of arc weights 
LW = [0,1] such that (V, E, LV, LE) is an arc-labeled tree 
and there is an (n→1, n ≥1) mapping from the elements in 
E to the elements in LW (i.e. different arcs can carry the 
same weights). 
 

Finally, Definition 4 introduces a user and 

algorithmic convenience, also illustrated in Figure 3. 

 

Definition 4. Normalized arc-labeled, arc-weighted 

trees. A normalized arc-labeled, arc-weighted tree is an 
arc-labeled, arc-weighted tree T = (V, E, LV, LE, LW) 
having a fan-out-weight-normalized (n→1, n ≥1) mapping 
from the elements in E to the elements in LW, i.e. the 
weights of every fan-out add up to 1.0. 
 

Such normalized trees will be assumed throughout 

for the rest of this paper. 

Car 

Ford Sedan 

10000 
Small Taurus V-8 

1999 

Figure 1. A node-labeled tree (a used car product). 

Ford Sedan

10000

Small TaurusV-8 

1999

Figure 2. An arc-labeled tree.

Category

Miles

Year 
Make 

Engine Model Size

0.8 

Car 

Ford Sedan

10000

Small TaurusV-8 

1999

Figure 3. A (normalized) arc-labeled, arc-weighted tree.

Category 
Year Make 

Engine Model Size

0.1 0.1 

0.7
Miles

0.5 0.50.3

 2



2.2 Tree Similarity 

 

Here, we briefly review our proposed tree similarity 

algorithm [1], [8]. Generally speaking, our algorithm 

traverses input trees top-down (root-leaf) and then 

computes their similarity bottom-up. If two non-empty 

(sub)trees have identical root node labels, their similarity 

is computed by a recursive top-down (root-leaf) traversal 

through the subtrees that are accessible on each level via 

identical arc labels. The recursion is terminated by two 

(sub)trees (root-leaf) that are leaf nodes, in which case 

their similarity is 1.0 if their node labels are identical and 

0.0 otherwise. Every tree is divided into some subtrees. So, 

the top-down traversal and bottom-up computation is 

recursively employed for every pair of subtrees. 

 

Our algorithm has been incorporated into a subproject 

of the eduSource project [2]. A goal of this project is to 

search procurable learning objects for learners. The search 

results for a learner are represented as a percentage-ranked 

list of learning objects according to their similarity values 

with the learner’s query.  Figure 4 shows a segment of a 

learner tree. Another application of the algorithm is our 

Teclantic portal (http://teclantic.cs.unb.ca) which matches 

projects according to project profiles represented as trees. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.  TREE SIMPLICITY 

 

During tree similarity computation, when a subtree in 

tree T1 is missing in tree T2 (or vice versa), we compute 

the simplicity of the missing subtree. Our tree simplicity 

measure takes into account not only the node degree 

(breadth) at each level and leaf node depth but also the arc 

weights for the recursive tree simplicity computation. 

Intuitively, the simpler the single subtree in T1, the larger 

its simplicity and thus the larger its similarity to the 

corresponding empty tree in T2. So, we use the simplicity 

as a contribution to the similarity of T1 and T2. Using our 

tree simplicity measure, the simplicity converges towards 

0.0 when the tree is infinite. However, the simplest tree is 

a single node and we define that its simplicity is 1.0. 

 

 

    

 

 

 

 

 

 

 

 

 

 

 In tree T1 of Figure 5, the subtree rooted at node 

“Ford” under the arc “Make” is missing in T2. Our tree 

similarity algorithm passes this missing subtree to the 

treeplicity function to compute its simplicity. Figure 6 

shows the pseudo code of this function.  

 

Input: The depth degradation index i. A single tree T. 

Output: The simplicity value of T. 

Initialization: treeplideg = 0.5 //depth degradation factor 

treeplicity (i ,T) 

Begin   

    If T only contains a single node    return i; 
    endif 

    else  
      sum=0; 

      for (j =0; j < root node degree of T; j++);     

        sum+= 

           (weight of the jth arc) *treeplicity(i*treeplideg, Tj);         

             //Tj is the subtree under the jth arc  

      endfor                                                                                      
      TreeSimplicity =(1/root node degree of T) * sum; 

      return TreeSimplicity; 

    endelse 

 End. 
 
 

When calling treeplicity with a depth degradation 

index i and a single tree T as inputs, our simplicity 

measure is defined recursively to map an arbitrary single 

tree T to a value from [0, 1], decreasing with both the 

node degree at each level and leaf node depth. The 

recursion process terminates when T is a leaf node. For a 

(sub)tree, simplicity is computed by a recursive top-down 

traversal through its subtrees. Basically, the simplicity 

value of T is the sum of the simplicity values of its 

subtrees multiplied with arc weights from [0, 1], a subtree 

depth degradation factor ≤ 0.5, and the reciprocal of root 

node degree of a subtree that is from (0, 1]. 

          

       For any subtree Tj underneath an arc lj, we multiply 

the arc weight of lj with the recursive simplicity of Tj. To 

enforce smaller simplicity for wider trees, the reciprocal 

of the node degree is used on every level. On each level of 

deepening, the depth degradation index i is multiplied 

with a global depth degradation factor treeplideg ≤ 0.5 

Lom 

Rights-set 

Yes HTML Don’t Care 

Technical-set

rights 

copyrightandother 

restrictions 

technical 

descriptions 
format 

otherplatform

requirements

Don’t Care

0.16667 0.16665 

0.8 
0.2 

0.6 0.4 

…  … 

Figure 4. Segment of a learner tree. 

Figure 6. Pseudo-code of the tree simplicity algorithm.

0.8

Car

Ford
Sedan

10000

Small Taurus V-8 

1999 

Figure 5. Arc-labeled, arc-weighted trees.

Category

Miles

Yea

Car

Sedan

rMake

Engine Model Size

0.1 0.1

0.5 0.5 0.3
0.7

10000

Small

1999

Category

Miles

Year
0.4

0.6

Size0.7
0.3

T1 T2
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and the result is the new value of i in the recursion. We 

always assume that the value of treeplideg is 0.5. 

 

       The smaller the treeplideg factor, the smaller the tree 

simplicity value. Based on the sum of the infinite 

decreasing geometric progression 

...
2

1
...

2

1

2

1
2

++++
n

 being 1, we assume that 

treeplideg is 0.5 in order to enforce the smallest 

acceptable degradation through the recursion: this 

guarantees that the simplicity values of finite trees are 

always smaller than 1. For leaf nodes found on any level, 

the current i value is their simplicity. 

 

Our tree simplicity algorithm is given as a recursive 

function shown below. 

 

                                                                                          

                                                                                        (1) 

 

 

 

where, 

Š(T): the simplicity value of a single tree T 

DI and DF: depth degradation index and depth degradation 

factor  

d: depth of a leaf node 

m: root node degree of tree T that is not a leaf 

wj: arc weight of the jth arc below the root node of tree T 

Tj: subtree below the jth arc with arc weight wj 

 

The initial value of DI represents the simplicity value 

of the node with depth 0 (d = 0). Therefore, the simplicity 

of a tree that is a single node equals to DI. Since an empty 

tree is meaningless in our tree simplicity algorithm, we 

define that the simplicity value of a “single-node” tree is 

1.0 which also implies that DI = 1.0. As mentioned before, 

the value of DF is defined as 0.5 because of the 

employment of decreasing geometric progression. 

 

When a tree horizontally and vertically grows 

infinitely, the value of m and d will be infinite. Therefore, 

both (DF)d and 1/m approach 0.0. Since both wj and Š(Tj) 

are in the interval [0, 1], equation (1) approaches 0.0 

when m and d are infinite. 

 

   

                                                                                                                                                                                                          

 

     Now, in order to clarify our tree simplicity algorithm, 

we show the computation of simplicity for an arbitrary 

tree (Figure 7) with the following illustrative example. 

 

In Figure 7, we show the depth (d) and its 

corresponding depth degradation index (DI) on the right 

hand side of tree T. According to equation (1), the 

simplicity of this tree is computed as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Š(T) = 
4

1
(0.2*Š(TB)+0.1* Š(TB C)+  

0.3* Š(TD)+ 0.4* Š(TE))                     (3) 

 

In equation (3), the denominator 4 is the degree of the 

root node of tree T. TB, TB C, TD and TE represent the 

subtrees rooted at nodes B, C, D and E respectively. The 

simplicity values for subtrees (leaf nodes) TC and TD are 

their values of DI, 0.5. We recursively use equation (1) for 

the simplicity computation of subtrees TBB and TE and get 

equations (4) and (5), respectively.  

 

Š(TB) =B

3

1
(0.8*Š(TF)+0.1* Š(TG)+ 0.1* Š(TH))     (4) 

          Š(TE) =
2

1
(0.5*Š(TI)+0.5* Š(TJ))                           (5) 

 

Simplicity values for subtrees (leaf nodes) TF, TG, TH, 

TI and TJ are their DI value 0.25. Therefore, Š(TB) = B

3

25.0
 

and Š(TE) = 
2

25.0
. Consequently, we obtain the value of 

Š(T) 0.06667. 

 

4. ANALYSIS  
 

In this section, we provide the theoretical and 

computational results to analyze the properties of the 

proposed tree simplicity measure given in Section 3. For 

this purpose, we consider balanced k-ary trees, although 

we do not restrict the degree and depth of each node in the 

tree. The theoretical results on balanced k-ary tree derived 

from equation (1) are a non-recursive function with two 

variables k and d. A k-ary tree is a normalized arc-labeled, 

arc-weighted tree according to Definition 4 such that the 

value of m in equation (1) is always a fixed k. The 

computational results indicate that tree simplicity values 

smoothly decrease with increasing k and d, which 

conform to our requirement. Here, both k and d are equal 

{ =Š
I

)(T

dD )( FD ⋅

∑
=

⋅
m

TŠw
m

1j

jj  )(
1

if T is a leaf node,

otherwise.

lim
∞→
∞→

d
m

Š( T) = 0 (2)

Figure 7. An illustrative tree T with d and DI. 
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to or greater than 1. When both of them are equal to 0, the 

tree is a single node which has been analyzed in Section 3. 

 

 

 

 

 

 

 

 

 

 

In a balanced k-ary tree shown in Figure 8, subtrees 

under nodes A1 to Ak are shown by triangles since this 

tree may have arbitrary depth. All leaf nodes are at the 

same level; therefore, all leaf nodes have identical depth 

which is also the tree depth. All arc weights for sibling 

arcs are averaged. Therefore, we get arc weight 1/k for 

each arc. 

 

For this special case, equation (1) is simplified as 

 

                                                                                 (6) 

 

where, Tk-ary represents a k-ary tree. After incorporating 

the values of DI and DF, we get 

 

                                                                                        (7) 

 

       Although equation (2) reveals how the values of m 

(here, k) and d affect the tree simplicity values, we show 

the plots for equation (7) to get more intuitive 

understandings. 

 

       Plots generated by Matlab in Figure 9 represent the 

trend of tree simplicity values for varying d, when k is 

fixed to 1, 2 and 3. When k is fixed, equation (7) is an 

exponential function. According to equation (2), the tree 

simplicity should approach 0.0 when k and d approach 

infinity. In e-Business/e-Learning environments, it is most 

likely that trees with very big depth would not arise. For 

example, in Figure 4, the depth of the given tree is 2. It is 

evident that we can show the complete tree with this 

depth for a learner. Therefore, we consider changes to the 

value of d from 1 to 40 in the subsequent figures. This 

applies to the value of k as well.  

 

       Each plot in Figure 9 has the same trend: tree 

simplicity decreases when the depth (d) of the tree 

increases. However, for the same d, smaller the value of k, 

bigger is the tree simplicity. Furthermore, bigger the value 

of k, faster the plot approaches 0.0. This agrees with our 

analysis of equation (2). 

 

 

A 

 

 

 

      The plots in Figure 10 represent the trend of tree 

simplicity values for varying k, when the value of d is 

fixed to 1, 2 and 3. When d is fixed, equation (7) is a 

polynomial function.  

 

 
 

 

 

      Plots in Figure 10 have trends similar to those in 

Figure 9. The tree simplicity decreases when the value of 

k increases. However, for the same k, smaller the value of 

d, bigger is the tree simplicity. Furthermore, bigger the 

value of d, faster the plot approaches 0.0. 

  

A1

ll k1k1/  k1/  

Ak

Figure 8. A balanced k-ary tree. 

Figure 9. Simplicity as a function of d.

I( DŠ d ⋅⋅= F)
1
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Figure 10. Simplicity as a function of k.
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The maximum simplicity value for a k-ary tree is 0.5 

when both k and d are 1 (1-ary tree). An example tree of 

this case is shown in Figure 11. 

 

 

 

 

 

 

 

 

However, both k and d in equation (7) may have 

arbitrary values. In our computation, we consider every 

combination when both of them vary from 1 to 40. This 

means that the maximum root node degree (k) and the 

maximum depth (d) of the tree are equal to 40. Figure 12 

shows the 3-dimensional plot of equation (7). It is easy to 

find that even when the values of k and d approach 40 

(not infinity), the simplicity values are very close to 0.0. 

This agrees with our requirement that simpler the tree, 

bigger is the simplicity. 

 

 

 
 

 

 

5. CONCLUSION  
 

We have used arc-labeled, arc-weighted trees to 

represent the product/service descriptions of buyers/ 

sellers in e-Business/e-Learning environments. We have 

formalized the definitions of our trees and conducted 

experiments on balanced k-ary tree. The computational 

results on this special case agree with our requirement. 

  

Our trees are arbitrary trees without restrictions on 

node degree and depth. A simpler tree possesses a bigger 

simplicity value. The simplest tree in our algorithm is a 

single node and its simplicity is defined as 1.0. The most 

complex tree is an infinite tree. The simplicity value for 

an infinite tree approaches 0.0. We have formalized our 

tree simplicity measure as a recursive function. 
A 

B 
Figure 11. The k-ary tree when both k and d equal to 1.

a 
 

In future, we will further analyze more on the 

properties of the general recursive function of our tree 

simplicity measure and justify our approach not only for 

k-ary trees. 

1.0 
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