
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Eighteenth Canadian Conference on Artificial Intelligence (AI'2005)
[Proceedings], 2005

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=082f83de-09a8-4174-a871-ed256b5c8bd5

https://publications-cnrc.canada.ca/fra/voir/objet/?id=082f83de-09a8-4174-a871-ed256b5c8bd5

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A Markov Model for Inventory Level Optimization in Supply-Chain

Management
Buffett, Scott

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

A Markov Model for Inventory Level

Optimization in Supply-Chain

Management*

Buffett, S.
May 2005

* published at the Eighteenth Canadian Conference on Artificial

Intelligence (AI’2005). pp. 133-144. May 9-11, 2005. Victoria, British

Columbia, Canada. NRC 48262.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

A Markov Model for Inventory Level

Optimization in Supply-Chain Management

Scott Buffett

Institute for Information Technology – e-Business,
National Research Council Canada

46 Dineen Drive, Fredericton, New Brunswick, Canada E3B 9W4
Scott.Buffett@nrc.gc.ca

Abstract. We propose a technique for use in supply-chain management
that assists the decision-making process for purchases of direct goods.
Based on projections for future prices and demand, requests-for-quotes
are constructed and quotes are accepted that optimize the level of in-
ventory each day, while minimizing total cost. The problem is modeled
as a Markov decision process (MDP), which allows for the computation
of the utility of actions to be based on the utilities of consequential fu-
ture states. Dynamic programming is then used to determine the optimal
quote requests and accepts at each state in the MDP. The model is then
used to formalize the subproblem of determining optimal request quan-
tities, yielding a technique that is shown experimentally to outperform a
standard technique from the literature. The implementation of our entry
in the Trading Agent Competition-Supply Chain Management game is
also discussed.

Keywords: supply-chain management, Markov decision process, dy-
namic programming, purchasing.

1 Introduction

With the dramatic increase in the use of the Internet for supply chain-related
activities, there is a growing need for services that can analyze current and
future purchase possibilities, as well as current and future demand levels, and
determine efficient and economical strategies for the procurement of direct goods.
Such solutions must take into account the current quotes offered by suppliers,
likely future prices, projected demand and storage costs in order to make effective
decisions on when and from whom to make purchases. Based on demand trends
and projections, there is typically a target inventory level that a business hopes
to maintain. This level is high enough to be able to meet fluctuations in demand,
yet low enough that unnecessary storage costs are minimized (see Shapiro [13]
for example). The focus of this paper is to provide an algorithm for purchase
decision-making that strives to keep inventory close to its optimal level, while
minimizing total cost.

B. Kégl and G. Lapalme (Eds.): AI 2005, LNAI 3501, pp. 133–144, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

134 S. Buffett

In a perfect world, the best strategy for keeping inventory as close to the
optimal level as possible would be to delay ordering to the last moment. That is,
if demand trends indicate that a new shipment will be needed on some particular
day, it would be best to delay ordering as long as possible so that the quantity
needed can be assessed with the most certainty. An accurate estimate of the
optimal quantity is critical since an inventory shortage may result in lost sales,
while excessive inventory could result in unnecessary storage costs. Because of
the variance in demand, the quantity needed a few days from now can usually be
more accurately assessed than the quantity needed several days from now. Thus
by delaying ordering the expected utility of future demand levels is increased.
On the other hand, one may want to order earlier if current prices are low, if
there will be more selection (i.e. many quotes from which to choose), or simply
to ensure timely delivery. Thus there can be incentive to bid both early and late.

In this paper, we propose a decision-theoretic algorithm that advises the
buyer when and from whom to buy by looking at possible future decisions. The
buyer is advised to take an action if and only if there is no present or future
alternative that would yield greater overall expected utility. We consider the
request-for-quote (RFQ) model where the buyer requests quotes from suppliers
by specifying the quantity needed and the desired delivery date, receives quotes
a short time after which specify the price and quantity that can be delivered
by the specified date (if not the entire order), and has a fixed period of time
to decide whether or not to accept each quote. Factors that are of concern in-
clude the projected demand for each day (or whatever time period granularity
is desired), current and projected sale prices each day for each supplier, storage
costs, and RFQ costs. While there might not be direct costs associated with re-
questing quotes, indirect costs such as the time taken to compute optimal RFQs,
as well as the possibility of being neglected by suppliers if we repeatedly fail to
respond to their quotes, must be considered. To compute optimal decisions, we
model the problem as a Markov decision process (MDP) [12] and use dynamic
programming [3, 9] to determine the optimal action at each decision point. Ac-
tions include submitting RFQs to the various suppliers and accepting/rejecting
quotes. With this model, the value (i.e. expected utility) of future consequential
decisions can be taken into account when determining the value of choices at
current decisions. Based on this model, the subproblem of determining optimal
quantities to request in an RFQ is formalized and results are presented.

The new Trading Agent Competition-Supply Chain Management game (TAC-
SCM) [1, 2] now provides a vehicle for testing various techniques related to
supply-chain management in a competitive environment. While the theory in
this paper deals with supply chain management in general, we briefly discuss
how the techniques can be implemented for our entry in the competition, NaRC.

The paper is organized as follows. In section 2 we give a formal description of
the problem. In section 3, we formulate the problem as an MDP and define the
dynamic programming model. The subproblem of determining optimal request
quantities is presented in section 4, and results of a few experiments are given. In
section 5 we discuss the TAC-SCM game and describe how the research discussed
in this paper fits. Finally, in section 6 we offer a few conclusions and outline plans
for future work.

A Markov Model for Inventory Level Optimization 135

2 Problem Formalization

We consider the model where the buyer wants to purchase multiple units of
a single good for resale (perhaps first being assembled with other items). Let
SUP = {sup1, . . . , supm} be the set of suppliers from whom the good can be
obtained. Let d = 0, 1, . . . n denote the days over the procurement period (e.g.
the next fiscal year, etc.). These could instead be hours, weeks, etc., depending
on the desired granularity of time. Also, let k ∈ Z be an integer denoting the
inventory on a particular day d, and let h be the holding cost per unit per day.
That is, if k′ units are left over at the end of the day, they are held at a cost of
hk′. Also, let uk(k, d) be the utility of holding k units at the start of day d. This
is a function of the expected income for d, taking into consideration the expected
demand on d and the expected cost of holding the leftover inventory at the end
of the day. This function will be maximized with higher k during high-demand
periods and lower k over low-demand periods.

Our research is placed in the context of the request-for-quote (RFQ) pro-
curement model. At any time, the buyer can send an RFQ to various suppliers.
A subset of those suppliers will then respond to the request by offering a quote
which specifies the terms of the offer. Let each RFQ be a tuple 〈supi, q, ddel〉
specifying the supplier supi, the quantity q needed and the day ddel on which to
deliver. Let each quote be a tuple 〈supi, p, qdel, ddel, dr〉 specifying the supplier
supi, the price p of the order, the quantity qdel that can be delivered on ddel (in
case the entire order cannot be filled by that day), and the day dr on which the
quoted price will be rescinded if the buyer has not yet responded. Let c be the
small cost associated with each RFQ. Payment for the order is assumed to be
made when the quote is accepted.

Also, for the purposes of projecting future outcomes, assume we have three
probability distribution functions that are used to predict future outcomes: the
demand distribution function, the supply distribution function and the price
distribution function. The demand distribution function df(d, q) takes a day d

and a quantity q and returns the probability of selling q units on d. The supply
distribution function sf(sup, d, d′, q) takes a supplier sup, days d and d′ and
a quantity q and returns the probability that sup can (and will agree to) to
deliver q units on day d′ if they were ordered on day d. We assume that if
the supplier does agree to this delivery, then all q units will arrive on d′ with
certainty. The model could, however, be extended to allow for late deliveries by
using a probability measure over all possible d′. Finally, the price distribution
function pf(sup, d, d′, q, p) takes a supplier sup, days d and d′, a quantity q and
a monetary amount p and returns the probability that sup will quote a price
of p for q units ordered on d to be delivered on day d′. Each of these functions
can be constructed by examining market history, supplier history, or by using
statistical projection techniques.

The problem is to decide each day 1) which quotes that have already been
obtained to accept, and 2) whether to request new quotes, and if so, how the
RFQ’s should be formulated. That is, we must decide on which days we will likely
need new shipments, and also what the optimal quantity is. The goal is to make

136 S. Buffett

decisions that maximize the overall inventory utility (i.e. keep the inventory close
to optimal each day), while minimizing the total amount spent on orders over
the duration of the purchase period.

3 Modeling the Problem as a Markov Decision Process

In this paper we capitalize on the idea of examining exactly what information
will be known at future choice points when determining the optimal actions. For
example, consider two suppliers sup1 and sup2. If we choose to request a quote
for k units from each of them on some future day d, at the time we receive the
quotes we will know the exact price being offered by each supplier. Based on
this knowledge, plus the knowledge of the expected utility of not ordering at
all, we can choose either to accept the cheaper quote or pass altogether. While
the expected utility of any course of action on day d may not be as high as the
expected utility of any action at the current decision point (i.e. current quotes),
it is possible that the overall expected utility of waiting until day d to take action
is higher. This is due to the fact that more information will be known on d than
is known now, which will allow the decision-maker to make a more informed
decision, thus increasing expected utility.

To determine the optimal quotes to accept and RFQs to submit, the problem
is modeled as a Markov decision process (MDP) [12]. An MDP is a mathematical
tool used to aid decision-making in complex systems. In an MDP, the possible
states S that the decision-making agent can occupy are defined, as well as the set
of actions A that the agent can take in each state. If action a is deterministic in
state s, then the transition function maps (s, a) to a new state s′. Otherwise the
action is stochastic, and the transition function maps (s, a) to states according
to a probability function Pr, where Pr(s′|s, a) is the probability of occupying
s′ given that a is performed in s. Also, some or all of the states may have
an associated reward. The purpose of modeling a problem as an MDP is to
determine a policy function π : S → A, which takes any state and specifies the
action such that the expected sum of the sequence of rewards is maximized.
Dynamic programming is used to determine the optimal action in each state.

3.1 States

Each state s in the MDP for our problem is a tuple 〈I, Q,C, d, k〉 where

– I is the set of incoming orders. That is, I contains the orders known to be
coming in on the day specified in s or on some future day. Each i ∈ I is a
tuple 〈q, d〉 where d is the day of the shipment and q is the quantity.

– Q is the set of currently open quotes.
– C is the total amount spent on purchases thus far.
– d is the day.
– k is the current inventory.

A Markov Model for Inventory Level Optimization 137

3.2 Actions

Actions consist of accepting quotes and sending RFQs. Since quote rescind times
are always known (i.e. quotes are not pulled without warning), we assume that
decisions on whether or not to accept a quote are delayed to the last possi-
ble moment, to allow decisions to be as informed as possible. Thus quotes are
only accepted the day before they are to be rescinded. We also assume that
at most one RFQ is sent to each supplier each day. This assumption is put
in place merely to reduce the number of possible actions at each state, and
could easily be lifted if desired. Let req(rfq) represent the act of submitting
a request-for-quote rfq, and let acc(qu) represent the act of accepting quote
qu. For a state s with quotes Qs and day ds, let {req(〈sup, q, ddel〉) | sup ∈
SUP, qmin ≤ q ≤ qmax, ds < ddel ≤ dn} be the set possible quote requests,
where qmin and qmax are the minimum and maximum quantities that can be
ordered, respectively, and dn is the final day of the procurement period. Also let
the set {acc(〈s, p, q, ddel, dr〉) | 〈s, p, q, ddel, dr〉 ∈ Qs, dr = ds + 1} be the set of
possible quote acceptances. The set A of actions is then the union of these two
sets. Any subset A′ of the actions in A for a state s can be performed with the
restriction that at most one RFQ is submitted to each supplier. Let the set of
these valid subsets for a state s be denoted by As.

3.3 Rewards

The value of a state in an MDP is equal to the reward for that state plus the
expected rewards of future states. The optimal action at each state is then the
one defined to yield the highest expected value. Our technique aims to optimize
the utility of the inventory held each day, and minimize the total cost over the
entire purchase period. Thus there are two types of rewards given in the MDP.
To assess the reward to be assigned to each state, two utility functions are used:
the inventory utility function uk and the cost utility function uc.

The inventory utility function uk : Z ×Z → ℜ takes an inventory level k and
a day d and returns the utility of holding k units on d. This utility is determined
by measuring the ability of meeting the expected demand for day d with k

units against the expected costs associated with holding the leftover units. For
example, if k′ is the optimal number of units to hold on d (thus maximizing uk

for d), then for k < k′ inventory may not be high enough to meet the demand
so money may be lost, and for k > k′ inventory may be too high and too costly
to be worth holding.

As an example, let the demand function be such that either 1 or 2 units will
be sold, each with 0.5 probability, on day d. Also let the sale price of each unit be
10, and the inventory holding cost be h = 1/unit/day. The expected net income
(revenue - minus inventory cost) E(x, d) for x units on day d is 0 if x = 0 (since
no units are sold and no units are held), 10 if x = 1 (the one item will be sold
with certainty, since the demand function says that 1 or 2 units will be sold
today), and 16.5 − x if x ≥ 2 (taking into account losses incurred by possible
leftover inventory). The utility function uk is then a function of E(x, d) (perhaps
concave to indicate aversion to risk).

138 S. Buffett

The cost utility function uc : Z → ℜ is a monotonically decreasing function
that takes a cost c and returns the utility of spending c. It is typically a concave
function reflecting the risk-averseness of the decision-maker.

For each state s, the inventory reward is given. That is, if k is the inventory
for s and d is the day, then the inventory reward for s is uk(k, d). For each
terminal state a cost reward is given, which is the utility uc(C) of spending a
total of C over the duration of the procurement period.

The value of each state is then a function of the expected cost reward and the
expected inventory rewards for the remainder of the procurement period, given
that the state is reached.

3.4 The Transition Function

The transition function specifies which states can follow from an action in a
given state in the MDP. Let T (s, a) be this function which takes a state s ∈ S

and action a ∈ As, and returns the set of states that can be occupied as a
result of performing a in s. Let Pr(s′|s, a) be the transition probability function,
which specifies the probability of occupying state s′ ∈ T (s, a) directly after a is
performed in s. These two functions are computed as follows.

Let s = 〈I, Q,C, d, k〉 be a state and a ∈ As an action where a is a valid
subset of requests and acceptances that can be performed in s. Then s′ =
〈I ′, Q′, C ′, d′, k′〉 ∈ T (s, a) if

– I ′ contains the incoming orders from I, minus those offers that arrived on
day d, plus new incoming orders that result from the quotes accepted in a.
More formally, let Iold = {〈q, ddel〉 | 〈q, ddel〉 ∈ I, ddel = d} be the orders
that came in on d, and let Inew = {〈q, ddel〉 | acc(〈sup, p, q, ddel, d〉) ∈ a}
be the new incoming orders that arise as a result of accepting quotes. Then
I ′ = I \ Iold ∪ Inew.

– Q′ contains the quotes from Q, minus those that were rescinded on day d,
plus those that are received as a result of the requests in a. Let Qold =
{〈sup, p, q, ddel, dr〉 | 〈sup, p, q, ddel, dr〉 ∈ Q, dr = d′} be the orders that are
rescinded on d′, and let Qnew = {〈sup, p, q, ddel, d+1+ql〉 | req(〈sup, q, ddel〉) ∈
a} be the quotes received in response to the requests in a, where ql is the
quote length (i.e. the number of days for which the quote is valid). This could
be assumed to be constant over all suppliers. Thus Q′ = Q \ Qold ∪ Qnew.
Note that there may be several possible values for the price p and the deliv-
erable quantity q in the quotes in Qnew. The transition probability function
will consider the probability of each outcome in determining the probability
of the state as a whole.

– C ′ is the amount spent C by day d, plus the amount spent on accepted quotes
in a, plus the RFQ costs. Thus C ′ = C+

∑

p+creq over all acc(〈sup, p, q, ddel,

d + 1〉) ∈ a, where creq is the cost of requests in a.

– k′ is the starting inventory k for day d, minus the units sold td on d, plus
those received via incoming orders in Inew. Thus k′ = k − td +

∑

q for all
〈q, ddel〉 ∈ Inew. Note that there may be several possible values for td, each

A Markov Model for Inventory Level Optimization 139

with some probability of occurring. The probability of any td greater than
k +

∑

q is 0.
– d′ = d + 1.

Let s be a state and let T (s, a) contain the states that can follow from per-
forming a in s. Then for each state s′ ∈ T (s, a), the probability P (s′|s, a) of
occupying s′ after a is performed in s is the probability of receiving the new
quotes in s′ given the requests in a, multiplied by the probability of the sales
realized in the transition from s to s′. Let d be the day specified in s, let Qnew

be the set of new quotes received on day d + 1 (i.e. the quotes that are in s′ but
not in s), and let td be the number of units sold on day d, which is the inventory
in s′ minus the sum of the inventory in s and the units received (i.e. in Inew).
Let the demand distribution function df , supply distribution function sf and
price distribution function pf be as defined in section 2. Then the probability of
getting the quotes in Qnew is

Prob(Qnew) =
∏

qui∈Qnew

sf(supi, d + 1, ddeli , qi) · pf(supi, d + 1, ddeli , qi, pi)

(1)

where qui = 〈supi, pi, qi, ddeli , dri
〉. Note that there must be a qui for every

request in a. Unanswered or rejected requests should have a corresponding quote
qui = 〈supi, 0, 0, ddeli , dri

〉 in Qnew. Since the probability of selling td units on d

is df(d, td), the probability of s′ occurring given that a is performed in s is

P (s′|s, a) = Prob(Qnew) · df(d, td) (2)

3.5 The Dynamic Programming Model

The value iteration method of dynamic programming is used to determine the
optimal action at each state. Let v : S → ℜ be the value function that assigns
to each state its value (i.e. utility), let π : S → Q be the optimal policy and let
s = 〈I, Q,C, d, k〉 be a state. Then

v(s) =

fd(uk(k, d), uc(C)) if d = dn

max
a∈As

∑

s′∈T (s,a)

fd(uk(k, d), v(s′)) · P (s′|s, a) otherwise

π(s) =

null if d = dn

arg max
a∈As

∑

s′∈T (s,a)

fd(uk(k, d), v(s′)) · P (s′|s, a) otherwise

(3)

where fd is the function for computing the value of the state in terms of the
inventory reward of the current state and the expected value of the following
states, and arg is the operator that returns the maximizing a. This function may
be constant or variable and can be constructed to factor in the decision maker’s
relative importance for optimizing either cost or inventory level.

140 S. Buffett

4 Using the Model to Determine RFQ Quantities

4.1 Modeling the Subproblem

While the Markov model presented in the previous section laid a framework for
all decision-making involved in optimizing target inventories, in several situations
the model may be too complex to solve in a reasonable length of time. In this
section we show how the model can be used to solve a more manageable piece of
the puzzle, and formalize the subproblem of determining the optimal quantity
to request in a given RFQ.

In this case, elements such as quoted costs are not considered, and thus
decision-making does not depend on the onerous task of enumerating all out-
comes for price. Instead, an acceptance rate is used, which is a static measurement
of the likelihood any quote will be accepted based on its price. For example, if it
is found that the quotes are accepted 55% of the time (or in the case when mul-
tiple quotes are solicited simultaneously for purpose of comparison, that some

quote is accepted), then the acceptance rate is 55%. While demand typically
changes each day, we assume that the acceptance rate is the average taken over
the procurement period. The only dynamic factor under consideration here is
the current inventory. The question is then, based on the current inventory, how
many units should be requested?

The problem is stated more formally as follows: Given a current inventory
level k, shipping time st (in days), daily inventory utility function uk(k, d), daily
demand function df(d, k) indicating the probability that k units are sold on day
d, and acceptance rate α, if an RFQ were to be submitted, how many units
should be ordered? The MDP for this problem is then a portion of the MDP for
the general problem. Each state s is a tuple 〈I, d, k〉 where

– I is the set of incoming orders
– d is the day.
– k is the current inventory.

An action is an RFQ rfq = 〈q, d + st〉 for a particular quantity q to arrive on
day d+ st. Every state has an associated reward equal to uk(k, d) where k is the
starting inventory on day d. The optimal action π(s) then specifies the optimal
RFQ given state s.

4.2 Testing the Performance

To assess the potential performance of using this model, the method was tested
against a method from the literature that uses a Monte Carlo algorithm [13].
With this method, a reorder point r and a quantity q are randomly chosen
from some distribution. Market behaviour is then simulated within the specified
parameters, where an order for q units is placed each time the inventory falls
below r. This process continues for several (r, q) pairs, and the optimal result is
noted.

Tests were run over a 150 day procurement period, with an inventory utility
function uk(k, d) = max{0, 15−|15−k|} (utility maximized at k = 15, minimized

A Markov Model for Inventory Level Optimization 141

Utility Achieved by Each Method with

Constant Utility Function

800

900

1000

1100

1200

1300

1400

1500

1600

5 6 7 8 9 10 11

Shipping Time

U
ti

li
ty MDP

MC

Utility Achieved by Each Method with

Decreasing Utility Function

800

900

1000

1100

1200

1300

1400

1500

1600

5 6 7 8 9 10 11

Shipping Time

U
ti

li
ty MDP

MC

Fig. 1. (a) Utility achieved using our method (MDP) and Monte Carlo (MC) using

a constant utility function over all 150 days in the procurement period, (b) Utility

achieved using our method (MDP) and Monte Carlo (MC) using a decreasing utility

function where 0 inventory is desired on day 150

Increase in Utilty Achieved by MDP

Method

0

10

20

30

40

50

60

70

80

5 6 7 8 9 10 11

Shipping Time

In
c

re
a

s
e

 i
n

 U
ti

li
ty

Decreasing Constant

Fig. 2. The increase in utility achieved by our method over Monte Carlo for a constant

and decreasing utility function

at k = 0, k ≥ 30) for all d, and a quote acceptance rate of α = 50%. Shipping
time was varied throughout the tests. A summary of the results is demonstrated
in Figure 1(a).

The Monte Carlo method is quite rigid, since at any given time either q

or 0 is ordered. Even though the optimal quantity and the optimal times at
which to order are utilized, it still does not perform as well as our method,
which adapts to the situation and determines the appropriate amount. Notice
that both methods perform worse as the shipping time is lengthened because of
increased uncertainty. To further demonstrate the advantages of our technique,
Figure 1(b) shows results of tests where the utility function is not constant. In
particular, this test utilized a decreasing utility function over time. This models
the situation where no inventory is desired at the end of the procurement period.

142 S. Buffett

Our method performs even better, since order quantities can be adjusted to
accommodate a changing utility function, where the Monte Carlo method uses
a static q and r values. Figure 2 demonstrates the overall increase realized by
our method for each of the constant and dynamic utility functions.

5 The TAC-SCM Game

5.1 Game Description

The Trading Agent Competition has occurred annually since 2000. The com-
petition was designed to encourage research in trading agent problems, and it
provides a method for direct comparison of different approaches, albeit in an
artificial environment. The original competition focused on acquiring a pack-
age of items in set of auctions, but in 2003 the ”Supply Chain Management”
(SCM) [1, 2] game was introduced. The TAC-SCM game charges the competing
agent with the task of successfully managing a computer dealership: acquiring
components from suppliers, assembling these components into complete PCs, and
selling these PCs to a group of customers. Starting with an initial bank balance
of 0 and unlimited borrowing capabilities, the agents’ goal in the competition is
to make the most profit. To compete successfully, agents must be quite complex
and able handle different purchasing models. To win contracts with customers,
agents must win a first-price sealed-bid auction. To acquire goods successfully
from suppliers, agents must be able to effectively judge pricing trends. At the
same time, they must also consider that supply is limited, and thus rejecting an
offer could result in inability to acquire goods. Several other stochastic factors
such as customer demand, customer reserve values and delivery delays must also
be handled for the agent to be successful.

The procurement model of the TAC-SCM game loosely reduces to our MDP
model. Each day, an agent receives quotes from suppliers based on the previous
day’s requests, as well as quote requests from customers. From the procurement
point of view, the goal is to determine which quotes from suppliers to accept
and what new quotes to request, to optimize inventory and cost. Quotes and
RFQs take the same form as those described in this paper. Based on the bidding
strategy used in response to customer requests (we do not focus on bidding in
this paper, only procurement), the agent can judge the demand function by
assessing how likely it is to sell certain quantities each day. Based on previous
dealings with the various suppliers, the agent can also model the supply and
price distribution functions, and build the MDP. Dynamic programming is then
used to determine the optimal accepts and requests.

5.2 Our “NaRC” Agent

NaRC [7] competed in the 2004 TAC-SCM competition in New York. While we
qualified for the tournament (top 24 teams out of about 35), we were elimi-
nated in the quarter-final round (the first of three days of competition). Aspects
of NaRC utilized the MDP model described in this paper. In particular, the

A Markov Model for Inventory Level Optimization 143

purchase decision-making engine modeled the sequence of subsequent purchase
decisions as an MDP in order to determine the value of current quotes. While
thus far untested in the TAC-SCM competition, the technique of using an MDP
to compute optimal RFQs has been shown above to be quite promising. We plan
to implement the method in our agent for future installments of the competition.

6 Conclusions and Future Work

In this paper we present a mathematical model for determining when to request
quotes from suppliers, how to construct the RFQs, and which of the resulting
quotes to accept. Decisions are made in such a way as to optimize the level
of inventory each day, while lowering total cost. The problem is modeled as
a Markov decision process (MDP), which allows for the computation of the
utility of actions to be based on the utilities of consequential future states. Each
action is considered to be a set containing quote requests and accepts. Dynamic
programming is then used to determine the optimal action at each state in
the MDP. The model is then used to formalize the subproblem of determining
optimal request quantities, and experiments show that the technique performs
better than a standard technique from the literature. The TAC-SCM game is
also discussed, and the implementation details for own agent, NaRC, are briefly
described.

The idea of modeling problems similar to this as an MDP has been done
before. Boutilier et al. [4, 5], Byde [8], and Buffett and Grant [6] have previously
used MDPs for auction decision-making. However our model differs from these
works in two ways: 1) we consider the request-for-quote model rather than the
auction model, and 2) we buy items for resale with the extra aim of maintaining
a certain level of inventory, in addition to cost minimization. Other techniques
have been presented by Priest et al. [10, 11] for purchasing items for resale;
however, these works do not attempt to measure the value of current choices
based on the value of consequential future decisions.

For future work, we intend to test the technique against other strategies to
determine under what conditions and situations the technique performs well
and not so well. Such strategies range from the more näıve where quotes are
requested simply when inventories reach certain levels and the cheapest quote
is immediately accepted, to the more sophisticated where massive amounts of
inventories are built up (regardless of overhead costs) and intelligent selling
methods are employed to maximize profit. We believe that the latter type of
strategy, which was employed by several agents in the TAC-SCM game in 2003,
might not yield as much profit per unit as our technique, but could surpass our
technique in total profit because of the higher volume of transactions. As far the
potential success of using our technique in the actual TAC-SCM game, we believe
that while these high-volume agents may monopolize supply early in the game,
in the long run our agent will perform better, especially in low-demand games.
Only after experimentation with real-world examples as well as the TAC-SCM
will these questions be answered.

144 S. Buffett

References

1. R. Arunachalam, J. Eriksson, N. Finne, S. Janson, and N. Sadeh. The
supply chain management game for the trading agent competition 2004.
http://www.sics.se/tac/tacscm 04spec.pdf. Date accessed: Apr 8, 2004, 2004.

2. Raghu Arunachalam and Norman Sadeh. The 2003 supply chain management trad-
ing agent competition. In Proc. International Conference on Electronic Commerce
(ICEC2004), pages 113–120, Delft, The Netherlands, 2004.

3. R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ,
1957.

4. C. Boutilier, M. Goldszmidt, and B. Sabata. Continuous value function approx-
imation for sequential bidding policies. In the Fifteenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-99), pages 81–90, Stockholm, 1999.

5. C. Boutilier, M. Goldszmidt, and B. Sabata. Sequential auctions for the allocation
of resources with complementaries. In the Sixteenth International Joint Conference
on Artificial Intelligence (IJCAI-99), pages 527–534, Stockholm, 1999.

6. S. Buffett and A. Grant. A decision-theoretic algorithm for bundle purchasing in
multiple open ascending price auctions. In the Seventeenth Canadian Conference
on Artificial Intelligence (AI’2004), pages 429–433, London, ON, Canada, 2004.

7. S. Buffett and N. Scott. An algorithm for procurement in supply chain manage-
ment. In Proc. of the Trading Agent Design and Analysis Workshop (TADA’04),
pages 9–14, New York, NY, 2004.

8. A. Byde. A dynamic programming model for algorithm design in simultaneous
auctions. In WELCOM’01, Heidelburg, Germany, 2001.

9. R.A. Howard. Dynamic Programming and Markov Processes. M.I.T. Press, Cam-
bridge, Mass., 1960.

10. C. Preist, C. Bartolini, and A. Byde. Agent-based service composition through
simultaneous negotiation in forward and reverse auctions. In Proceedings of the
4th ACM Conference on Electronic Commerce, pages 55–63, San Diego, California,
USA, 2003.

11. C. Priest, A. Byde, C. Bartolini, and G. Piccinelli. Towards agent-based service
composition through negotiation in multiple auctions. In AISB’01 Symp. on Inf.
Agents for Electronic Commerce, 2001.

12. M.L. Puterman. Markov Decision Processes. Wiley, 1994.
13. J. F. Shapiro. Modeling the Supply Chain. Duxbury, Pacific Grove, CA, 2001.

