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ABSTRACT

This contribution presents applications of a recently
proposed immersed boundary method to the solution
of the flow around moving rigid bodies. The use
of body-conforming meshes to solve the flow around
rigid objects may involve extensive meshing work that
has to be repeated each time a change in the posi-
tion of immersed solids is needed. Mesh generation
and solution interpolation between successive grids
may be costly and introduce errors if the geometry
changes significantly during the course of the compu-
tation. These drawbacks are avoided when the solution
algorithm can tackle grids that do not fit the shape of
immersed objects. We present here an extension of a
recently developed Immersed Boundary (IB) finite el-
ement method to the computation of interaction forces
between the fluid and immersed solid bodies. Solid ob-
jects immersed into the fluid are considered rigid and
the fixed mesh covers both the fluid and solid regions.
The boundary of immersed objects is defined using
a time dependent level-set function and the proposed
procedure is able to impose accurately the boundary
conditions on the immersed solid surfaces and to re-
cover the interacting forces. This is done by enrich-
ing the finite element discretization of interface ele-
ments with additional degrees of freedom which are
latter eliminated at element level. The forces acting
on the solid surfaces are then computed from the en-
riched finite element solution and if needed the solid
movement is determined form the rigid solid momen-
tum equation. Solutions are shown for flows around
moving solid bodies.

1 INTRODUCTION

Most CFD and fluid-structure interaction solvers are
based on body-conforming (BC) grids (i.e. the ex-
ternal boundary and surfaces of immersed bodies are

represented by the mesh faces), but there is an in-
creased interest in solution algorithms for non body-
conforming grids. For these methods the spatial dis-
cretization is done over a single domain containing
both fluid and solid regions and where mesh points
are not necessarily located on the fluid-solid interface
[1, 2, 3]. For simplicity, we will use in the present
work the immersed boundary (IB) term to identify a
non body-fitted method. 1B methods have the main
advantage of avoiding costly and sometimes very dif-
ficult meshing work on body-fitted geometries. Gener-
ally a regular parallelepiped is meshed with an uniform
grid. The IB method results also in important algorith-
mic simplifications when immersed moving bodies are
considered. One important drawback of such a method
is that the boundary which has an important influence
on the solution especially for fluid-solid interaction is
also a place where distorted elements may be found
once regular mesh elements are cut by the solid bound-
ary. The imposition of the boundary conditions on the
immersed boundary is also a point of concern.

In most IB methods, boundary conditions on immersed
surfaces are handled either accurately by using dy-
namic data structures to add/remove grid points as
needed, or in an approximate way by imposing the
boundary conditions to the grid point closest to the
surface or through least-squares. Our recently pro-
posed approach [4, 5] achieves the level of accuracy of
cut cell dynamic node addition techniques with none
of their drawbacks (increased CPU time and costly
dynamic data structures). The discretization of ele-
ments cut by the fluid/solid interface is enriched by
the addition of degrees of freedom associated to inter-
face nodes which are latter eliminated at element level.
The proposed approach is verified on simple cases for
which solutions on BC grids can be obtained and is
applied to more complex flow problems in presence of
moving solid bodies.



2 THE MODEL PROBLEM

We consider the transient incompressible fluid flow
problem on a bounded computational domain
formed by the fluid region Q(¢) and the solid volume
Q,(t). The fluid and solid volumes are time dependent
but the total volume Q formed by their reunion is not.
The immersed interface T;(¢) = 0Q/(r) N 9Q;(t) rep-
resents a boundary for the fluid flow.

2.1 Finite element solution

The flow is described by the incompressible Navier-
Stokes equations:

o2 4w va)= 5 s i )

V.u=0, (2)

where p is the density, u the velocity vector, p the pres-
sure, u the viscosity, and f a volumetric force vector.

The interface T';, between the fluid and solid regions,
is specified using a level-set function y defined as a
signed distance function from the immersed interface:

d(x,x;(¢)), x in the fluid,
0, x on the interface, 3)
—d(x,x;(f)), x in the solid,

y(x,1) =

The initial and boundary conditions associated to
equations (1) and (2) are

u="Up(x), for t =15, (4)
u = Up(x,?), for x e Tn(t), (5)
u#(Vu+Va') - ph=t(x,), for x e Ty(t), (6)

where Tp is the portion of the fluid boundary 9Q/
where Dirichlet conditions are imposed, and t is the
traction imposed on the remaining fluid boundary I', =
dQ\I'p. Dirichlet boundary conditions are imposed
at the interface between fluid and solid regions, i.c.
I; © Tp. Because I'; is not represented by the finite
element discretization, a special procedure is used to
enforce velocity boundary conditions on this surface.
This approach will be discussed in Section 2.2,

Equations are discretized using the GLS method with
linear continuous shape functions for both velocity
and pressure [5]. Time derivatives are computed us-
ing an implicit Euler scheme. The nonlinear equa-
tions are solved with a few Picard steps followed by
Newton-Raphson iterations. The resulting linear sys-
tems are solved using the bi-conjugate gradient stabi-
lized (Bi-CGSTAB) iterative method with an ILU pre-
conditioner.

2.2 The IB method

The algorithm used to treat the immersed boundary
surface is the same as introduced by Ilinca and Hétu
for the static fluid/solid interfaces [4] and for moving
interfaces [5].
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Figure 1: Decomposition of interface elements.

The mesh is intersected by the interface at the current
time step 7, at points located along element edges (V;
in Figure 1) and we consider those points as additional
degrees of freedom in the finite element formulation.
While elements cut by the immersed boundary have
nodes in both fluid and solid regions, they can be de-
composed into sub-elements which are either entirely
in the fluid region (E;r in Figure 1) or in the solid re-
gion (Ejs in Figure 1).

When solving the fluid flow we consider that the solid
embedded in the mesh has a prescribed velocity ug(t).
This velocity can also be computed from the forces ap-
plied on the solid body. The solid velocity is therefore
imposed on the solid nodes including the additional
interface nodes. By doing so no additional degrees of
freedom need to be included for the interface nodes.
Only the right hand side of equations associated to
fluid nodes connected to them will change and by these
means take into account the location of the interface.

The pressure degrees of freedom are associated to the
continuity equations. In order to enforce mass conser-
vation in the entire fluid region, the continuity equa-
tions are solved on all fluid elements, including the
fluid sub-elements at the interface. The continuity
equations are not solved in the solid elements and the
pressure is set to a constant (say zero) on solid nodes.
The pressure discretization is considered discontinu-
ous between interface sub-elements and the additional
pressure degrees of freedom corresponding to interface
nodes are eliminated by static condensation. For more
details the reader should consult [4, 5].
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(a) Computational domain

(b) Detail of the mesh

Figure 2: Computational domain and mesh.

2.3 Computation of fluid/solid interac-
tion forces

In this work the fluid and solid equations are solved
separately. The fluid flow uses the solid velocity as
boundary conditions and then provides the forces act-
ing on the solid to serve in the computation of the solid
body movement. One main aspect in the simulation of
fluid/solid interaction is therefore the computation of
the interaction forces between the fluid and solid. The
force acting on the fluid at the solid interface is com-
puted from:

FF(;):/F [4(Vu+VuT) -a—pa]dl,  (7)

where the fluid/solid interface I'; is considered as
formed by the triangular faces of interface sub-
elements having all three nodes on the interface and
i is the outward unit normal vector on these faces.

The force acting on the solid may be seen as a reaction
force and has the same magnitude as the force on the
fluid but acts in the opposite direction, Fg = —Fp.

3 APPLICATION

A 3-D fluid-solid interaction problem for which exper-
imental data are available is the falling of a sphere un-
der gravity in an enclosure filled with a viscous fluid.
In the experimental setup of ten Cate ef al. [6] the
sphere has a diameter d = 0.015m and is placed in-
side a box of dimensions 0.1 x 0.1 x 0.16m* as shown
in Figure 2(a). The sphere is released at a initial height
of 0.12m from the bottom of the box. The present
IB method was tested for the same set of conditions
used in the experiment of ten Cate et al. [6] and for
which numerical results given by an immersed bound-
ary method were presented by Liao et al. [7]. The den-
sity of the falling sphere is p; = 1120kg/m’® and the

8 Re=15 (Exp)
A Re=4.1 (Exp)
O Re=116 (Exp)
¢ Re=322 (Exp)
= Re=1,5 (IB)
='='Re=4.1(1B)
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— Re=32 2 (IB)
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Figure 4: Evolution with time of the sphere velocity.

fluid properties for the four cases considered are sum-
marized in Table 1. The IB method was used to de-
termine the movement of the falling sphere inside the
rectangular enclosure until it reaches the bottom wall.
The mesh used for this simulation has 2,545,928 el-
ements and 533,022 node. A detail of the mesh near
the sphere is shown in Figure 2(b).

Table 1: Fluid properties for the falling sphere.

Case Re plkg/m®) u(Ns/m®)
El 1.5 970 0.373
E2 4.1 965 0212
E3 11.6 962 0.113
E4 31.9 960 0.058

The evolution with time of the sphere position and ve-
locity is compared with the measured values of ten
Cate ef al. [6] in Figures 3 and 4. The agreement is
excellent indicating that the forces acting on the solid
and the transient flow solution are well captured by the
IB method.
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Figure 5: Sphere falling for the conditions of case E3.

Figure 5 shows the position of the falling sphere at var-
jous times as well as the velocity distribution in a sec-
tion across the sphere center for the case £3. Att =0
(Figure 5(c)) the sphere is standing still and there is no
flow around it. Once the sphere is released, it accel-
erates gradually and the fluid flow in the box evolves
accordingly. At/ = 1.0s the sphere almost reached the
maximum sedimentation velocity and then at 7 = 1.5s
the deceleration caused by the proximity of the bottom
wall has started as confirmed by the results presented
in Figure 4.

4 CONCLUSIONS

An accurate 1B finite element method for computing
the fluid/solid interaction forces is presented. The
boundary conditions are imposed on the immersed in-
terface by incorporating into the grid the points where
the mesh intersects the fluid/solid boundary. The de-
grees of freedom associated with the additional grid
points are eliminated either because the velocity is
known or by static condensation in the case of the pres-
sure. The velocity and pressure solution on interface
sub-elements are then used to determine the forces act-
ing on the solid surface. The three-dimensional IB fi-

nite element method was used to solve the settling of a
single sphere in a viscous fluid. Simulations for differ-
ent flow regimes indicate an excellent agreement with
the experiment for both the position and velocity of the
sphere.
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